
Pro Android

Sayed Y. Hashimi and Satya Komatineni

15967fm.indd 1 6/5/09 11:14:50 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Download at www.conquerthenext.com

http://conquerthenext.com/
http://www.conquerthenext.com/

Pro Android

Copyright © 2009 by Sayed Y. Hashimi and Satya Komatineni

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-1596-7

ISBN-13 (electronic): 978-1-4302-1597-4

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Java™ and all Java™-based marks are trademarks or registered trademarks of Sun Microsystems, Inc., in
the United States and other countries.

Apress, Inc., is not affiliated with Sun Microsystems, Inc., and this book was written without endorsement
from Sun Microsystems, Inc.

Lead Editor: Steve Anglin
Development Editor: Douglas Pundick
Technical Reviewer: Vikram Goyal
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony Campbell,

Gary Cornell, Jonathan Gennick, Michelle Lowman, Matthew Moodie, Jeffrey Pepper,
Frank Pohlmann, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Richard Dal Porto
Copy Editor: Nina Goldschlager Perry
Associate Production Director: Kari Brooks-Copony
Production Editor: Candace English
Compositor: Patrick Cunningham
Proofreader: Lisa Hamilton
Indexer: Ron Strauss
Artist: April Milne
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.
apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability
to any person or entity with respect to any loss or damage caused or alleged to be caused directly or indi-
rectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com.

15967fm.indd 2 6/5/09 11:14:50 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

v

Contents at a Glance

About the Authors . xv

About the Technical Reviewer . xvii

Acknowledgments . xix

Introduction . xxi

CHAPter 1 Introducing the Android Computing Platform . 1

CHAPter 2 Getting Your Feet Wet . 21

CHAPter 3 Using Resources, Content Providers, and Intents 43

CHAPter 4 Building User Interfaces and Using Controls . 107

CHAPter 5 Working with Menus and Dialogs . 151

CHAPter 6 Unveiling 2D Animation . 197

CHAPter 7 Exploring Security and Location-Based Services 225

CHAPter 8 Building and Consuming Services . 263

CHAPter 9 Using the Media Framework and Telephony APIs 301

CHAPter 10 Programming 3D Graphics with OpenGL . 325

CHAPter 11 Managing and Organizing Preferences . 363

CHAPter 12 Coming to Grips with 1.5 . 377

CHAPter 13 Simplifying OpenGL and Exploring Live Folders 395

INDeX . 425

15967fm.indd 5 6/5/09 11:14:50 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

vii

Contents

About the Authors . xv

About the Technical Reviewer . xvii

Acknowledgments . xix

Introduction . xxi

CHAPter 1 Introducing the Android Computing Platform 1

History of Android . 3

Delving into the Dalvik VM . 4

Comparing Android and Java ME . 5

Understanding the Android Software Stack . 8

Developing an End-User Application with the Android SDK 9

The Android Emulator . 9

The Android UI . 10

The Android Foundational Components . 11

Advanced UI Concepts. 12

Android Service Components . 13

Android Media and Telephony Components . 14

Android Java Packages . 15

Taking Advantage of Android Source Code . 18

Summary . 19

CHAPter 2 Getting Your Feet Wet . 21

Setting Up Your Environment . 21

Downloading JDK 6 and Eclipse 3.4 . 21

Downloading the Android SDK . 22

Installing Android Development Tools (ADT) . 22

Learning the Fundamental Components . 24

View . 24

Activity . 24

Intent . 24

Content Provider . 25

Service . 25

AndroidManifest.xml . 25

15967fm.indd 7 6/5/09 11:14:50 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

■CONTENTSviii

Hello World! . 25

Exploring the Structure of an Android Application . 28

Analyzing the Notepad Application . 30

Loading and Running the Notepad Application 31

Dissecting the Application . 31

Examining the Application Lifecycle . 38

Debugging Your App . 41

Summary . 42

CHAPter 3 Using resources, Content Providers, and Intents 43

Understanding Resources . 43

String Resources . 43

Layout Resources . 45

Resource-Reference Syntax . 47

Defining Your Own Resource IDs for Later Use. 48

Compiled and Noncompiled Android Resources 48

Enumerating Key Android Resources . 49

Working with Arbitrary XML Resource Files . 57

Working with Raw Resources . 58

Working with Assets . 59

Reviewing the Resources Directory Structure 60

Understanding Content Providers . 60

Exploring Android’s Built-in Providers . 61

Architecture of Content Providers . 67

Implementing Content Providers . 79

Understanding Intents . 91

Available Intents in Android . 92

Intents and Data URIs . 94

Generic Actions . 95

Using Extra Information . 96

Using Components to Directly Invoke an Activity 97

Best Practice for Component Designers . 99

Understanding Intent Categories . 99

The Rules for Resolving Intents to Their Components 102

Exercising the ACTION_PICK . 102

Exercising the GET_CONTENT Action . 104

Summary . 106

15967fm.indd 8 6/5/09 11:14:50 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

■CONTENTS ix

CHAPter 4 Building User Interfaces and Using Controls 107

UI Development in Android . 107

Understanding Android’s Common Controls . 113

Text Controls . 113

Button Controls . 117

List Controls . 122

Grid Controls . 126

Date and Time Controls . 128

Other Interesting Controls in Android . 130

The MapView Control . 130

The Gallery Control . 130

Understanding Layout Managers . 131

The LinearLayout Layout Manager . 131

The TableLayout Layout Manager . 134

The RelativeLayout Layout Manager . 139

The AbsoluteLayout Layout Manager . 141

The FrameLayout Layout Manager . 143

Customizing Layout for Various Screen Configurations 145

Understanding Adapters . 146

Getting to Know SimpleCursorAdapter . 146

Getting to Know ArrayAdapter . 147

Creating Custom Adapters . 148

Debugging and Optimizing Layouts with the Hierarchy Viewer 149

Summary . 150

CHAPter 5 Working with Menus and Dialogs . 151

Understanding Android Menus . 151

Creating a Menu . 153

Responding to Menu Items . 154

Creating a Test Harness for Testing Menus 156

Working with Other Menu Types . 163

Expanded Menus . 163

Working with Icon Menus . 163

Working with Submenus . 164

Provisioning for System Menus . 165

Working with Context Menus . 165

Working with Alternative Menus . 168

Working with Menus in Response to Changing Data 172

15967fm.indd 9 6/5/09 11:14:50 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

■CONTENTSx

Loading Menus Through XML Files . 172

Structure of an XML Menu Resource File . 172

Inflating XML Menu Resource Files . 173

Responding to XML-Based Menu Items . 174

A Brief Introduction to Additional XML Menu Tags 175

Using Dialogs in Android . 176

Designing an Alert Dialog . 177

Designing a Prompt Dialog . 179

Nature of Dialogs in Android . 184

Rearchitecting the Prompt Dialog . 185

Working with Managed Dialogs. 186

Understanding the Managed-Dialog Protocol 186

Recasting the Nonmanaged Dialog as a Managed Dialog 186

Simplifying the Managed-Dialog Protocol . 188

Summary . 196

CHAPter 6 Unveiling 2D Animation . 197

Frame-by-Frame Animation . 198

Planning for Frame-by-Frame Animation . 198

Creating the Activity. 199

Adding Animation to the Activity . 201

Layout Animation . 204

Basic Tweening Animation Types . 204

Planning the Layout-Animation Test Harness 205

Creating the Activity and the ListView . 206

Animating the ListView . 209

Using Interpolators . 212

View Animation . 213

Understanding View Animation . 214

Adding Animation . 216

Using Camera to Provide Depth Perception in 2D 220

Exploring the AnimationListener Class . 221

Some Notes on Transformation Matrices . 222

Summary . 223

CHAPter 7 exploring Security and Location-Based Services 225

Understanding the Android Security Model . 225

Overview of Security Concepts . 226

Signing Applications for Deployment . 226

15967fm.indd 10 6/5/09 11:14:50 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

■CONTENTS xi

Performing Runtime Security Checks . 229

Understanding Security at the Process Boundary 229

Declaring and Using Permissions . 230

Understanding and Using Custom Permissions 232

Working with Location-Based Services . 238

Understanding the Mapping Package . 238

Understanding the Location Package . 249

Summary . 262

CHAPter 8 Building and Consuming Services . 263

Consuming HTTP Services . 263

Using the HttpClient for HTTP GET Requests 264

Using the HttpClient for HTTP POST Requests 266

Dealing with Exceptions . 269

Addressing Multithreading Issues . 272

Doing Interprocess Communication . 276

Creating a Simple Service . 276

Understanding Services in Android . 277

Understanding Local Services . 278

Understanding AIDL Services . 282

Defining a Service Interface in AIDL . 283

Implementing an AIDL Interface . 286

Calling the Service from a Client Application 288

Passing Complex Types to Services . 292

Summary . 300

CHAPter 9 Using the Media Framework and telephony APIs 301

Using the Media APIs . 301

Understanding the setDataSource Method . 305

Playing Video Content . 307

Understanding the MediaPlayer Oddities . 311

Exploring Audio Recording . 311

Using the Telephony APIs . 316

Working with SMS . 316

Working with the Telephony Manager . 323

Summary . 324

15967fm.indd 11 6/5/09 11:14:50 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

■CONTENTSxii

CHAPter 10 Programming 3D Graphics with OpenGL 325

Understanding OpenGL . 326

OpenGL ES . 327

OpenGL ES and Java ME . 327

M3G: Another Java ME 3D Graphics Standard 328

Using OpenGL ES . 328

Essential Drawing with OpenGL ES . 329

Understanding the Camera and Coordinates 334

Interfacing OpenGL ES with Android . 338

Creating and Using the OpenGL Test Harness . 342

Designing the Test Harness . 343

OpenGLTestHarnessActivity.java . 345

OpenGLTestHarness.java . 346

OpenGLDrawingThread.java . 348

EglHelper.java . 352

Renderer.java . 354

AbstractRenderer.java . 354

SimpleTriangleRenderer.java . 355

Changing Camera Settings . 358

Using Indices to Add Another Triangle . 360

Summary . 362

CHAPter 11 Managing and Organizing Preferences 363

Exploring the Preferences Framework . 363

Understanding CheckBoxPreference . 367

Understanding EditTextPreference . 370

Understanding RingtonePreference . 371

Organizing Preferences . 373

Summary . 376

15967fm.indd 12 6/5/09 11:14:50 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

■CONTENTS xiii

CHAPter 12 Coming to Grips with 1.5 . 377

Installing the ADT Plug-in for Android 1.5 Development 377

Getting Started with Android 1.5 . 379

Creating an Android Virtual Device . 383

Exploring Improvements to the Media Framework 384

Using the MediaRecorder Class for Video Capture 385

Exploring the MediaStore Class . 386

Scanning the Media Store for Media Content 390

Exploring Voice Recognition . 392

Introducing the Input-Method Framework . 394

Summary . 394

CHAPter 13 Simplifying OpenGL and exploring Live Folders 395

Simplifying OpenGL . 396

Reimplementing the Simple Triangle OpenGL Drawing 398

OpenGL Animation Example . 401

Exploring Live Folders . 404

How a User Experiences Live Folders . 405

Building a Live Folder . 410

The Future of Android and the 1.5 SDK . 421

Key Online Resources for the 1.5 SDK . 423

Summary . 424

INDeX . 425

15967fm.indd 13 6/5/09 11:14:51 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

xv

About the Authors

■SAYeD Y. HASHIMI was born in Afghanistan and now resides in Jackson-
ville, Florida. His expertise spans the fields of health care, financials,
logistics, service-oriented architecture, and mobile application develop-
ment. In his professional career, Sayed has developed large-scale
distributed applications with a variety of programming languages and
platforms, including C/C++, MFC, J2EE, and .NET. He has published
articles in major software journals and has written several other popular
Apress titles. Sayed holds a master’s degree in engineering from the
University of Florida. You can reach Sayed by visiting http://www.
sayedhashimi.com.

■SAtYA KOMAtINeNI (http://www.satyakomatineni.com) has more than 20
years of programming experience working with small and large corpora-
tions. Satya has published more than 30 articles about web development
using Java and .NET technologies. He is a frequent speaker at industry
conferences on innovative technologies and a regular contributor to the
weblogs on java.net. He is the author of AspireWeb (http://www.
activeintellect.com/aspire), an open sourced, simplified tool for Java
web development. In addition, Satya is the creator of Aspire Knowledge
Central (http://www.knowledgefolders.com), an open sourced “personal
web OS” with a focus on individual productivity. He is also a contribut-
ing member to a number of Phase I proposals and one Phase II proposal

for the U.S. Small Business Innovation Research Program (http://www.sbir.gov/).

15967fm.indd 15 6/5/09 11:14:51 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

xvii

About the Technical Reviewer

■VIKrAM GOYAL is the author of the Apress book Pro Java™ ME MMAPI: Mobile Media API
for Java™ Micro Edition, as well as a technical writer and blogger. Vikram lives in Brisbane,
Australia, with his wife and baby daughter.

15967fm.indd 17 6/5/09 11:14:51 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

xix

Acknowledgments

Writing this book took effort not only from the authors, but also from some of the very
talented staff at Apress and the technical reviewer. Therefore, we would like to thank Steve
Anglin, Douglas Pundick, Richard Dal Porto, Nina Goldschlager Perry, and Candace English
from Apress. We would also like to extend our appreciation to the technical reviewer, Vikram
Goyal, for the work he did on the book. His commentary and corrections were invaluable.

15967fm.indd 19 6/5/09 11:14:51 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

xxi

Introduction

At a high level, this book is about writing mobile applications for devices that support the
Android Platform. Specifically, the book teaches you how to write applications using the
Android SDK.

Who this Book Is For
This book is for software developers interested in writing mobile applications with the
Android SDK. Because Android is a fairly new technology, anyone interested in building
mobile applications using the Java™ platform will also benefit from this book. In addition,
software architects and business-development professionals can use this book to get an
understanding of the Android Platform’s capabilities.

What this Book Covers
This book covers the Android SDK. It’s broken up into 13 chapters, as follows:

	 •	 Chapter	1,	“Introducing	the	Android	Computing	Platform”

 This chapter introduces you to the Android Platform and its basic building blocks. It
also gives you an overview of the Android subsystems by showing you the high-level
packages within the Android SDK. Plus, we provide information on Android’s special-
ized virtual machine that addresses the limitations of handheld devices.

	 •	 Chapter	2,	“Getting	Your	Feet	Wet”

 In this chapter, we show you how to set up a development environment for Android
programming. We then walk you through a basic application and introduce you to
some of the Android components. We also cover the application lifecycle and familiar-
ize you with some debugging tools.

	 •	 Chapter	3,	“Using	Resources,	Content	Providers,	and	Intents”

 Here we cover several of the fundamental pillars of the Android Platform—resources,
content providers, and intents. We explain what resources are and how they function
in an Android application. We demonstrate how to use content providers as a mecha-
nism for abstracting data into services. We define intents and show you how to use
them as a generic way to request action.

15967fm.indd 21 6/5/09 11:14:51 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

■INTRODUCTIONxxii

	 •	 Chapter	4,	“Building	User	Interfaces	and	Using	Controls”

 This chapter is all about building user interfaces with the Android widget toolkit. We
first cover building UIs programmatically, then cover Android’s preferred way of defin-
ing UIs—in XML layout files. We also discuss Android’s layout managers and view
adapters. Plus, this chapter provides an introduction to the Hierarchy Viewer tool,
which you use to optimize UIs.

	 •	 Chapter	5,	“Working	with	Menus	and	Dialogs”

 Here we extend our discussion on UI programming in Android by talking about menus
and dialogs. We show you Android’s philosophy on building menus, and then discuss
the various types of menus available in the Android SDK. We also talk about dialog
components.

	 •	 Chapter	6,	“Unveiling	2D	Animation”

 In this chapter, we discuss Android’s 2D animation capabilities. We show you how to
animate views to make your applications more appealing. Specifically, we cover three
categories of animation: frame-by-frame animation, layout animation, and view ani-
mation.

	 •	 Chapter	7,	“Exploring	Security	and	Location-Based	Services”

 This chapter covers Android’s security model and location-based services. In the first
part, we show you Android’s security requirements and then show you how to secure
your applications. In the second part, we talk about location-based services, which is a
fundamental aspect of a mobile device. We show you Android’s support for mapping
and then show you how to customize a map with data specific to your application. We
also cover geocoding in this chapter.

	 •	 Chapter	8,	“Building	and	Consuming	Services”

 This chapter is about building background services in Android. Here, we talk about
building services that are local to your application, as well as remote services—
services that can be consumed by other applications running on the device. Remote
services are based on Android Interface Definition Language (AIDL), so we show you
how to define AIDL types and files. We also describe how to pass types across process
boundaries.

	 •	 Chapter	9,	“Using	the	Media	Framework	and	Telephony	APIs”

 This chapter shows you how to build media-capable applications with the Android
SDK. We talk about playing audio and video and then show you how to record audio.
We cover text messaging in the telephony part of the chapter.

15967fm.indd 22 6/5/09 11:14:51 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

■INTRODUCTION xxiii

	 •	 Chapter	10,	“Programming	3D	Graphics	with	OpenGL”

 Here, you learn how to implement 3D graphics using OpenGL. We show you how to set
up OpenGL with your applications and then cover the basics of OpenGL and OpenGL
ES. We cover some of the essential OpenGL ES APIs and build a test harness that you
can use to exercise those APIs.

	 •	 Chapter	11,	“Managing	and	Organizing	Preferences”

 In this chapter, we talk about Android’s preferences framework. We show you that
Android has built-in support for displaying and persisting preferences. We discuss
three types of UI elements: CheckBoxPreference, EditTextPreference, and Ring-
tonePreference. We also talk about organizing preferences within your applications.

	 •	 Chapter	12,	“Coming	to	Grips	with	1.5”

 Chapter 12 discusses some of the changes in the Android 1.5 SDK. Specifically, we
talk about some of the SDK’s new tools and a few of the most exciting APIs. For
example, you’ll learn about the new UI wizard that creates Android resources, the
new speech-recognition intent, intents to record audio and video, video capture using
the MediaRecorder, and more. You’ll also get a short introduction to Android’s input-
method framework (IMF) implementation.

	 •	 Chapter	13,	“Simplifying	OpenGL	and	Exploring	Live	Folders”

 This chapter begins by covering the OpenGL-related changes in Android 1.5 and then
discusses the new live-folder framework. As you’ll see, the Android 1.5 SDK offers
some additional abstractions to the OpenGL APIs that make it easier for you to build
applications that utilize 3D graphics. We also talk at length about a new concept called
live folders, which allow you to expose content providers such as contacts, notes, and
media on the device’s default opening screen.

After reading this book, you’ll have a good understanding of the fundamentals of
Android. You will be able to utilize the various types of components available in the Android
SDK to build your mobile applications. You will also know how to deploy and version your
applications.

How to Contact the Authors
You can reach Sayed Y. Hashimi through his web site at http://www.sayedhashimi.com or by
e-mail at hashimisayed@gmail.com. You can reach Satya Komatineni through his web site at
http://www.satyakomatineni.com or by e-mail at satya.komatineni@gmail.com.

15967fm.indd 23 6/5/09 11:14:51 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

C h a p t e r 1

Introducing the android
Computing platform

Personal computing continues to become more “personal” in that computers are becoming
increasingly accessible anytime, anywhere. At the forefront of this advancement are handheld
devices that are transforming into computing platforms. Mobile phones are no longer just
for talking—they have been capable of carrying data and video for some time. More signifi-
cantly, the mobile device is now becoming so capable of general-purpose computing that it’s
destined to become the next PC. It is also anticipated that a number of manufacturers such as
ASUS, HP, and Dell will be producing netbooks based on the Android OS. So the battle lines of
operating systems, computing platforms, programming languages, and development frame-
works are being shifted and reapplied to mobile devices.

We are also expecting a surge in mobile programming in the IT industry as more and more
IT applications start to offer mobile counterparts. To help you profit from this trend, we’ll
show you how to use Java to write programs for devices that run on Google’s Android Platform
(http://code.google.com/android/), an open source platform for mobile development. We are
excited about Android because it is an advanced platform that introduces a number of new
paradigms in framework design. In this chapter, we’ll provide an overview of Android and its
SDK, show you how to take advantage of Android source code, and highlight the benefits of
programming for the Android Platform.

The fact that hitherto dedicated devices such as mobile phones can now count them-
selves among other venerable general-computing platforms is great news for programmers
(see Figure 1-1). This new trend makes mobile devices accessible through general-purpose com-
puting languages and therefore increases the range and market share for mobile applications.

The Android Platform fully embraces this idea of general-purpose computing for hand-
held devices. It is indeed a comprehensive platform that features a Linux-based operating
system stack for managing devices, memory, and processes. Android’s libraries cover tele-
phony, video, graphics, UI programming, and every other aspect of the physical device.

The Android Platform, although built for mobile devices, exhibits the characteristics of a
full-featured desktop framework. Google makes this framework available to Java programmers
through a software development kit called the Android SDK. When you are working with the
Android SDK, you rarely feel that you are writing to a mobile device because you have access to
most of the class libraries that you use on a desktop or a server—including a relational database.

1

15967ch01.indd 1 6/5/09 11:19:09 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 1 ■ INtrODUCING the aNDrOID COMpUtING pLatFOrM2

The General Purpose Computing Club

New Kid on the
Block

LaptopWorkstationServerMainframe

Figure 1-1. Handheld is the new PC.

The Android SDK supports most of Java Platform, Standard Edition (Java SE) except for the
Abstract Window Toolkit (AWT) and Swing. In place of the AWT and Swing, the Android SDK
has its own extensive modern UI framework. Because you’re programming your applications in
Java, you might expect to need a Java Virtual Machine (JVM) that is responsible for interpreting
the runtime Java bytecode. A JVM typically provides necessary optimization to help Java reach
performance levels comparable to compiled languages such as C and C++. Android offers its
own optimized JVM to run the compiled Java class files in order to counter the handheld device
limitations such as memory, processor speed, and power. This virtual machine is called the
Dalvik VM, which we’ll explore in the section “Delving Into the Dalvik VM.”

The familiarity and simplicity of the Java programming language coupled with Android’s
extensive class library makes Android a compelling platform to write programs for. Figure 1-2
provides an overview of the Android software stack. (We’ll provide further details in the sec-
tion “Understanding the Android Software Stack.”)

Java Libraries

User
Applications

Linux

Core C Libraries

Dalvik VM

Java SE/Java Apache

Multimedia

Telephone/Camera

Resources/Content Providers

UI/Graphics/Views

Activities/Services

Http/Connectivity

SQLite Database

Figure 1-2. High-level view of the Android software stack

15967ch01.indd 2 6/5/09 11:19:09 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 1 ■ INtrODUCING the aNDrOID COMpUtING pLatFOrM 3

History of Android
Now that we’ve provided a brief introduction to the Android Platform, we’ll describe how it
appeared on the mobile-development scene. Mobile phones use a variety of operating systems
such as Symbian OS, Microsoft’s Windows Mobile, Mobile Linux, iPhone OS (based on Mac OS
X), and many other proprietary OSs. Supporting standards and publishing APIs would greatly
encourage widespread, low-cost development of mobile applications, but none of these OSs
has taken a clear lead in doing so. Then Google entered the space with its Android Platform,
promising openness, affordability, open source code, and a high-end development framework.

Google acquired the startup company Android Inc. in 2005 to start the development of the
Android Platform (see Figure 1-3). The key players at Android Inc. included Andy Rubin, Rich
Miner, Nick Sears, and Chris White.

2005
Google Buys Android Inc.

2005
Work on Dalvik VM Starts

2007
OHA Announced

2007
Early Look SDK

2008
T-Mobile G1 Announced

2008
SDK 1.0 Released

2008
Android Open Sourced

2005

2007

2008

Figure 1-3. Android timeline

In late 2007, a group of industry leaders came together around the Android Platform to
form the Open Handset Alliance (http://www.openhandsetalliance.com). Some of the alli-
ance’s prominent members include

	 •	 Sprint	Nextel

	 •	 T-Mobile

	 •	 Motorola

	 •	 Samsung

	 •	 Sony	Ericsson

	 •	 Toshiba

	 •	 Vodafone

	 •	 Google

	 •	 Intel

	 •	 Texas	Instruments

Part of the alliance’s goal is to innovate rapidly and respond better to consumer needs,
and its first key outcome was the Android Platform. Android was designed to serve the needs
of mobile operators, handset manufacturers, and application developers. The members
have committed to release significant intellectual property through the open source Apache
License, Version 2.0.

15967ch01.indd 3 6/5/09 11:19:09 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 1 ■ INtrODUCING the aNDrOID COMpUtING pLatFOrM4

■Note Handset manufacturers do not need to pay any licensing fees to load Android on their handsets or
devices.

The Android SDK was first issued as an “early look” release in November 2007. In Septem-
ber 2008, T-Mobile announced the availability of the T-Mobile G1, the first smartphone based
on the Android Platform. A few days after that, Google announced the availability of Android
SDK Release Candidate 1.0. In October 2008, Google made the source code of the Android
Platform available under Apache’s open source license.

When Android was released, one of its key architectural goals was to allow applications
to interact with one another and reuse components from one another. This reuse not only
applies to services, but also to data and UI. As a result, the Android Platform has a number of
architectural features that keep this openness a reality. We’ll delve into some of these features
in Chapter 3.

Android has also attracted an early following because of its fully developed features to
exploit the cloud-computing model offered by web resources and to enhance that experience
with local data stores on the handset itself. Android’s support for a relational database on the
handset also played a part in early adoption.

In late 2008 Google released a handheld device called Android Dev Phone 1 that is capable
of running Android applications without being tied to any cell phone provider network. The
goal of this device (approximate cost $400.00) is to allow developers to experiment with a real
device that can run the Android OS with out any contracts. At around the same time, Google
also released a bug fix version 1.1 of the OS that is solely based on 1.0. In releases 1.0 and 1.1
Android did not support soft keyboards, requiring the devices to carry physical keys. Android
fixed this issue by releasing the 1.5 SDK in April of 2009, along with a number of other features,
such as advanced media-recording capabilities, widgets, and live folders. The last two chapters
of this book are dedicated to exploring the features from this 1.5 SDK.

Delving into the Dalvik VM
Google has spent a lot of time thinking about optimizing designs for low-powered handheld
devices. Handheld devices lag behind their desktop counterparts in memory and speed by eight
to ten years. They also have limited power for computation; a handheld device’s total RAM
might be as little as 64MB, and its available space for applications might be as little as 20MB.

■Note For example, the T-Mobile G1 phone, released in late 2008, comes with 192MB of RAM, a 1GB SD
card, and a 528 MHz Qualcomm MSM7201A processor. Compare that to the lowest-priced Dell laptop, which
comes with a 2.1 GHz dual-core processor and 2GB of RAM.

The performance requirements on handsets are severe as a result, requiring handset
designers to optimize everything. If you look at the list of packages in Android, you’ll see that
they are full-featured and extensive in number. According to Google, these system libraries
might use as much as 10MB, even with their optimized JVM.

15967ch01.indd 4 6/5/09 11:19:10 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 1 ■ INtrODUCING the aNDrOID COMpUtING pLatFOrM 5

These issues led Google to revisit the standard JVM implementation in many respects.
(The key figure in Google’s implementation of this JVM is Dan Bornstein, who wrote the Dalvik
VM and named it after a town in Iceland.) First, the Dalvik VM takes the generated Java class
files and combines them into one or more Dalvik Executable (.dex) files. It reuses duplicate
information from multiple class files, effectively reducing the space requirement (uncom-
pressed) by half from a traditional .jar file. For example, the .dex file of the web-browser app in
Android is about 200K, whereas the equivalent uncompressed .jar version is about 500K. The
.dex file of the alarm-clock app is about 50K, and roughly twice that size in its .jar version.

Second, Google has fine-tuned the garbage collection in the Dalvik VM, but it has cho-
sen to omit a just-in-time (JIT) compiler, in this release at least. The company can justify this
choice because many of Android’s core libraries, including the graphics libraries, are imple-
mented in C and C++. For example, the Java graphics APIs are actually thin wrapper classes
around the native code using the Java Native Interface (JNI). Similarly, Android provides an
optimized C-based native library to access the SQLite database, but this library is encapsulated
in a higher-level Java API. Because most of the core code is in C and C++, Google reasoned that
the impact of JIT compilation would not be significant.

Finally, the Dalvik VM uses a different kind of assembly-code generation, in which it uses
registers as the primary units of data storage instead of the stack. Google is hoping to accom-
plish 30 percent fewer instructions as a result.

We should point out that the final executable code in Android, as a result of the Dalvik VM,
is based not on Java bytecode but on .dex files instead. This means you cannot directly execute
Java bytecode; you have to start with Java class files and then convert them to linkable .dex files.

This extreme performance paranoia extends into the rest of the Android SDK. For exam-
ple, the Android SDK uses XML extensively to define UI layouts. However, all of this XML is
compiled to binary files before these binary files become resident on the devices. Android
provides special mechanisms to use this XML data.

While we are on the subject of Android’s design considerations, we should answer this
question: How would one compare and contrast Android to Java Platform, Micro Edition
(Java ME)?

Comparing Android and Java ME
As you have seen so far in this chapter, Android has taken a dedicated and focused approach to
its mobile-platform efforts that goes beyond a simple JVM-based solution. The Android Plat-
form comes with everything you need in a single package: the OS, device drivers, core libraries,
the JNI, the optimized Dalvik VM, and the Java development environment. Developers can be
assured that when they develop new applications, all key libraries will be available on the device.

Let us offer a brief overview of Java ME before comparing the two approaches. Figure 1-4
shows the availability of Java for various computing configurations. Java Platform, Standard
Edition (Java SE) is suitable for desktop and workstation configurations. Java Platform, Enter-
prise Edition (Java EE) is designed for server configurations.

Java Platform, Micro Edition (Java ME) is an edition of Java that is pared down for smaller
devices. Furthermore, two configuration sets are available for Java ME. The first configura-
tion is called the Connected Device Configuration (CDC). Java ME for CDC involves a pared
down version of Java SE with fewer packages, fewer classes within those packages, and even
fewer fields and methods within those classes. For appliances and devices that are further con-
strained, Java defines a configuration called Connected Limited Device Configuration (CLDC).
The available APIs for various Java configurations are contrasted in Figure 1-5.

15967ch01.indd 5 6/5/09 11:19:10 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 1 ■ INtrODUCING the aNDrOID COMpUtING pLatFOrM6

Any optional packages that are installed on top of the base CDC and CLDC APIs are
treated as “profiles” that are standardized using the JSR process. Each defined profile makes
an additional set of APIs available to the developer.

Java Computing Configurations

Java ME
Connected
(Limited)
(CLDC)

Java ME
Connected

(CDC)

Java SE

Java EE

Laptop Connected PDA/
Phone/

Multimedia

Infrequently
Connected

Consumer Device

WorkstationServerMainframe

Figure 1-4. Java computing configurations

■Caution Both CLDC and CDC might support some Java APIs outside Java SE, and their classes might not
start with the java.* namespace. As a consequence, if you have a Java program that runs on your desktop,
there are no guarantees that it will run on devices supporting only micro editions.

Java EE

Java SE

Java ME
CDC

Java ME
CLDC

Javax.microedition.*;

Figure 1-5. Java API availability

15967ch01.indd 6 6/5/09 11:19:10 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 1 ■ INtrODUCING the aNDrOID COMpUtING pLatFOrM 7

The CLDC Java platform is hosted on a specialized and much reduced JVM called the K
Virtual Machine (KVM), which is capable of running on devices whose memory is as low as
128K. (The “K” in “KVM” stands for “kilobytes.”) CLDC can run additional APIs under MIDP
(Mobile Information Device Profile) 2.0. This API includes a number of packages under
javax.microedition.*. The key packages are MIDlets (simple applications), a UI package
called LCDUI, gaming, and media.

The CDC configuration APIs include the java.awt API, the java.net API, and more secu-
rity APIs in addition to the CLDC configuration APIs. The additional profiles available on
top of CDC make the javax.microedition.xlet API available to application programmers
(Xlets represent applications in the CDC configuration). On top of a CDC configuration
you’ll find about ten more optional packages that you can run, including Bluetooth, Media
API, OpenGL for Embedded Systems (OpenGL ES), Java API for XML Processing (JAXP),
JAXP-RPC, Java 2D, Swing, Java Remote Method Invocation (Java RMI), and Java Database
Connectivity {JDBC). Overall the Java ME specification includes more than 20 JSRs. It is also
expected that JavaFX (http://javafx.com) will play an increasing role in the mobile space
for Java.

■Note JavaFX is a new UI effort from Sun to dramatically improve applet-like functionality in browsers. It
offers a declarative UI programming model that is also friendlier to designers. A mobile version of JavaFX is
expected to be released sometime in 2009.

Now that you have a background on Java ME, look at how it compares to Android:

	 •	 Multiple device configurations: Java ME addresses two classes of micro devices and
offers standardized and distinct solutions for each. Android, on the other hand, applies
to just one model. It won’t run on low-end devices unless or until the configurations of
those devices improve.

	 •	 Ease of understanding: Because Android is geared toward only one device model, it’s
easier to understand than Java ME. Java ME has multiple UI models for each configura-
tion, depending on the features supported by the device: MIDlets, Xlets, the AWT, and
Swing. The JSRs for each Java ME specification are harder to follow; they take longer to
mature; and finding implementations for them can be difficult.

	 •	 Responsiveness: The Dalvik VM is more optimized and more responsive compared to
the standard JVM supported on a similarly configured device. You can compare the
Dalvik VM to the KVM, but the KVM addresses a lower-level device with much less
memory.

	 •	 Java compatibility: Because of the Dalvik VM, Android runs .dex bytecode instead of
Java bytecode. This should not be a major concern as long as Java is compiled to stan-
dard Java class files. Only runtime interpretation of Java bytecode is not possible.

15967ch01.indd 7 6/5/09 11:19:10 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 1 ■ INtrODUCING the aNDrOID COMpUtING pLatFOrM8

	 •	 Adoption: There is widespread support for Java ME on mobile devices because most
mobile phones support it. But the uniformity, cost, and ease of development in
Android are compelling reasons for Java developers to program for it.

	 •	 Java SE support: Compared to the support for Java SE in CDC, the Android support for
Java SE is a bit more complete, except for the AWT and Swing. As we mentioned earlier,
Android has its own UI approach instead. In fact, Android’s declarative UI resembles
the JavaFX approach.

Understanding the Android Software Stack
So far we’ve covered Android’s history and its optimization features including the Dalvik VM,
and we’ve hinted at the Java programming stack available. In this section, we would like to
cover the development aspect of Android. Figure 1-6 is a good place to start this discussion.

Linux Kernel
Device Drivers

Native Libraries Android Runtime

Resources

OpenGL WebKit

SQLite

FreeType

Media

Dalvik VM

Java SDK

Content Providers SQLite

Graphics

Views

Activities

Telephony Camera

Animation OpenGL

Applications

Figure 1-6. Detailed Android SDK software stack

At the core of the Android Platform is Linux kernel version 2.6, responsible for device driv-
ers, resource access, power management, and other OS duties. The supplied device drivers
include Display, Camera, Keypad, WiFi, Flash Memory, Audio, and IPC (interprocess com-
munication). Although the core is Linux, the majority—if not all—of the applications on an
Android device such as the T-Mobile G1 are developed in Java and run through the Dalvik VM.

Sitting at the next level, on top of the kernel, are a number of C/C++ libraries such as
OpenGL, WebKit, FreeType, Secure Sockets Layer (SSL), the C runtime library (libc), SQLite,
and Media. The system C library based on Berkeley Software Distribution (BSD) is tuned (to
roughly half its original size) for embedded Linux-based devices. The media libraries are based
on PacketVideo’s (http://www.packetvideo.com/) OpenCORE. These libraries are responsible
for recording and playback of audio and video formats. A library called Surface Manager con-
trols access to the display system and supports 2D and 3D.

15967ch01.indd 8 6/5/09 11:19:10 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 1 ■ INtrODUCING the aNDrOID COMpUtING pLatFOrM 9

The WebKit library is responsible for browser support; it is the same library that supports
Google Chrome and Apple Inc.’s Safari. The FreeType library is responsible for font support.
SQLite (http://www.sqlite.org/) is a relational database that is available on the device itself.
SQLite is also an independent open source effort for relational databases and not directly tied
to Android. You can acquire and use tools meant for SQLite for Android databases as well.

Most of the application framework accesses these core libraries through the Dalvik VM,
the gateway to the Android Platform. As we indicated in the previous sections, Dalvik is opti-
mized to run multiple instances of VMs. As Java applications access these core libraries, each
application gets its own VM instance. The Dalvik VM is backward-compatible with Java SE
Development Kit (JDK) 5.0 but optimized for the Android Platform. However, some features
of the Java experience might differ because the version of Java SE on Android is a subset of the
full platform.

The Android Java API’s main libraries include telephony, resources, locations, UI, con-
tent providers (data), and package managers (installation, security, and so on). Programmers
develop end-user applications on top of this Java API. Some examples of end-user applications
on the device include Home, Contacts, Phone, Browser, and so on.

Android also supports a custom Google 2D graphics library called Skia, which is written
in C and C++. Skia also forms the core of the Google Chrome browser. The 3D APIs in Android,
however, are based on an implementation of OpenGL ES from the Khronos group (http://
www.khronos.org). OpenGL ES contains subsets of OpenGL that are targeted toward embedded
systems.

From a media perspective, the Android Platform supports the most common formats for
audio, video, and images. From a wireless perspective, Android has APIs to support Bluetooth,
EDGE, 3G, WiFi, and Global System for Mobile Communication (GSM) telephony, depending
on the hardware.

Developing an End-User Application with the
Android SDK
In this section, we’ll introduce you to the high-level Android Java APIs that you’ll use to
develop end-user applications for an Android handheld. We will briefly talk about the Android
phone emulator and foundational components, UI programming, services, media, telephony,
animation, and OpenGL. We will also show you some code snippets when they are helpful.

The Android Emulator
The Android SDK ships with an Eclipse plug-in called Android Development Tools (ADT). You
will use this Integrated Development Environment (IDE) tool for developing, debugging, and
testing your Java applications. (We’ll cover ADT in depth in Chapter 2.)

You can also use the Android SDK without using ADT; you’d use command-line tools
instead. Both approaches support an emulator that you can use to run, debug, and test
your applications. You will not even need the real device for 90 percent of your application
development.

The full-featured Android emulator mimics most of the device features, but you’ll
encounter some limitations regarding USB connections, camera and video capture, head-
phones, battery simulation, and Bluetooth.

15967ch01.indd 9 6/5/09 11:19:10 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 1 ■ INtrODUCING the aNDrOID COMpUtING pLatFOrM10

The Android emulator accomplishes its work through an open source “processor emula-
tor” technology called QEMU (http://bellard.org/qemu/) developed by Fabrice Bellard. This
is the same technology that allows emulation of one operating system on top of another, irre-
spective of the processor. QEMU allows emulation at the CPU level.

In the case of the Android emulator, the processor is based on ARM (Advanced RISC
Machine). ARM is a 32-bit microprocessor architecture based on RISC (Reduced Instruction
Set Computer), in which design simplicity and speed is achieved through a reduced number of
instructions in an instruction set. The emulator actually runs the Android version of Linux on
this simulated processor. PowerPCs supporting Apple Macs and SPARC chips supporting Sun
workstations are examples of RISC architectures.

ARM is widely used in handhelds and other embedded electronics where lower power
consumption is important. Much of the mobile market uses processors based on this archi-
tecture. For example, Apple Newton is based on the ARM6 processor. Devices such as the
iPod, Nintendo DS, and Game Boy Advance run on ARM architecture version 4 with approxi-
mately 30,000 transistors. Compared to that, the Pentium classic contains 3,200,000 (3.2
million) transistors.

You can find more details about the emulator in the Android SDK documentation at
http://code.google.com/android/reference/emulator.html.

The Android UI
Android uses a UI framework that resembles other desktop-based, full-featured UI frame-
works, but it’s more modern and more asynchronous in nature. Android is almost a
fourth-generation UI framework if you were to call the traditional C-based Microsoft Windows
API the first generation and the C++-based MFC (Microsoft Foundation Classes) the second
generation. The Java-based Swing UI framework would be the third generation, introduc-
ing design flexibility far beyond that offered by MFC. The Android UI, JavaFX, Microsoft
Silverlight, and Mozilla XML User Interface Language (XUL) fall under this new type of fourth-
generation UI framework in which the UI is declarative and independently themed.

■Note The noteworthy aspect of UI programming in Android is that you are programming in a modern UI
paradigm even though the device happens to be a handheld.

Programming in the Android UI involves declaring the interface in XML files. You will
then load these XML view definitions as windows in your UI application. Even menus in your
application are loaded from XML files. Screens or windows in Android are often referred to
as activities, which comprise multiple views that a user needs in order to accomplish a logi-
cal unit of action. Views are Android’s basic UI building blocks, and you can further combine
them to form composite views called view groups. Views internally use the familiar concepts
of canvases, painting, and user interaction. An activity hosting these composite views, which
include views and view groups, is the logical replaceable UI component in Android.

One of the Android framework’s key concepts is the lifecycle management of activity win-
dows. Protocols are put in place so that Android can manage state as users hide, restore, stop,
and close activity windows. You will get a feel for these basic ideas in Chapter 2, along with an
introduction to setting up the Android development environment.

15967ch01.indd 10 6/5/09 11:19:10 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 1 ■ INtrODUCING the aNDrOID COMpUtING pLatFOrM 11

The Android Foundational Components
The Android UI framework, along with other parts of Android, relies on a new concept called
an intent. An intent is an amalgamation of ideas such as windowing messages, actions,
publish-and-subscribe models, interprocess communications, and application registries.
Here is an example of using the Intent class to invoke or start a web browser:

public static void invokeWebBrowser(Activity activity)
{
 Intent intent = new Intent(Intent.ACTION_VIEW);
 intent.setData(Uri.parse("http://www.google.com"));
 activity.startActivity(intent);
}

Through an intent, we are asking Android to start a suitable window to display the content
of a web site. Depending on the list of browsers that are installed on the device, Android will
choose a suitable one to display the site. You will learn more about intents in Chapter 3.

Android also has extensive support for resources, which include familiar elements and
files such as strings and bitmaps, as well as some not-so-familiar items such as XML-based
view definitions. The framework makes use of resources in a novel way to make their usage
easy, intuitive, and convenient. Here is an example where IDs are automatically generated for
resources defined in XML files:

public final class R {
 public static final class attr { }
 public static final class drawable {
 public static final int myanimation=0x7f020001;
 public static final int numbers19=0x7f02000e;
 }

 public static final class id {
 public static final int textViewId1=0x7f080003;
 }
 public static final class layout {
 public static final int frame_animations_layout=0x7f030001;
 public static final int main=0x7f030002;
 }
 public static final class string {
 public static final int hello=0x7f070000;
 }
}

Each auto-generated ID in this class corresponds to either an element in an XML file or a
whole file itself. Wherever you would like to use those XML definitions, you can use these gen-
erated IDs instead. This indirection helps a great deal when it comes to localization. (Chapter 3
covers the R.java file and resources in more detail.)

Another new concept in Android is the content provider. A content provider is an abstrac-
tion on a data source that makes it look like an emitter and consumer of RESTful services. The
underlying SQLite database makes this facility of content providers a powerful tool for appli-
cation developers. (In Chapter 3, we’ll discuss how intents, resources, and content providers
promote openness in the Android Platform.)

15967ch01.indd 11 6/5/09 11:19:10 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 1 ■ INtrODUCING the aNDrOID COMpUtING pLatFOrM12

Advanced UI Concepts
We have pointed out that XML plays a role in describing the Android UI. Look at an example of
how XML does this for a simple layout containing a text view:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android=http://schemas.android.com/apk/res/android>
<TextView android:id="@+id/textViewId"
 android:layout_width="fill_parent" android:layout_height="wrap_content"
 android:text="@string/hello"
 />
</LinearLayout>

You will then use an ID generated for this XML file to load this layout into an activity win-
dow. (We’ll cover these ideas further in Chapter 4.)

Android also provides extensive support for menus, from standard menus to context
menus. You’ll find it convenient to work with menus in Android because they are also loaded
as XML files and because resource IDs for those menus are auto-generated. Here’s how you
would declare menus in an XML file:

<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <!-- This group uses the default category. -->
 <group android:id="@+id/menuGroup_Main">
 <item android:id="@+id/menu_clear"
 android:orderInCategory="10"
 android:title="clear" />
 <item android:id="@+id/menu_show_browser"
 android:orderInCategory="5"
 android:title="show browser" />
 </group>
</menu>

Although Android supports dialogs, all dialogs in Android are asynchronous. These
asynchronous dialogs present a special challenge to developers accustomed to the synchro-
nous modal dialogs in some windowing frameworks. We’ll address menus and dialogs more
extensively in Chapter 5, where we’ll also provide a number of mechanisms to deal with asyn-
chronous-dialog protocols.

Android also offers support for animation as part of its UI stack based on views and
drawable objects. Android supports two kinds of animation: tweening animation and frame-
by-frame animation.

“Tweening” is a term in animation that refers to the drawings that are “in between” the
key drawings. You accomplish this with computers by changing the intermediate values at
regular intervals and redrawing the surface. Frame-by-frame animation occurs when a series
of frames is drawn one after the other at regular intervals. Android enables both animation
approaches through animation callbacks, interpolators, and transformation matrices. More-
over, Android allows you to define these animations in an XML resource file. Check out this
example, in which a series of numbered images is played in frame-by-frame animation:

15967ch01.indd 12 6/5/09 11:19:10 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 1 ■ INtrODUCING the aNDrOID COMpUtING pLatFOrM 13

<animation-list xmlns:android="http://schemas.android.com/apk/res/android"
 android:oneshot="false">
 <item android:drawable="@drawable/numbers11" android:duration="50" />
 ……
 <item android:drawable="@drawable/numbers19" android:duration="50" />
 </animation-list>

The underlying graphics libraries support the standard transformation matrices, allowing
scaling, movement, and rotation. A Camera object in the graphics library provides support for
depth and projection, which allows 3D-like simulation on a 2D surface. (We’ll explore anima-
tion further in Chapter 6.)

Android also supports 3D graphics through its implementation of the OpenGL ES 1.0
standard. OpenGL ES, like OpenGL, is a C-based flat API. The Android SDK, because it’s a
Java-based programming API, needs to use Java binding to access the OpenGL ES. Java ME has
already defined this binding through Java Specification Request (JSR) 239 for OpenGL ES, and
Android uses the same Java binding for OpenGL ES in its implementation. If you are not famil-
iar with OpenGL programming, the learning curve is steep. But we’ve reviewed the basics here,
so you’ll be ready to start programming in OpenGL for Android in Chapter 10.

Starting with release 1.5 Android has simplified OpenGL so that it is approachable to begin-
ning OpenGL programmers. We will cover these improvements in Chapter 13. Additionally, that
SDK introduced a new concept called live folders, which we will also cover in Chapter 13.

Android Service Components
Security is a fundamental part of the Android Platform. In Android, security spans all phases
of the application lifecycle—from design-time policy considerations to runtime boundary
checks. Location-based service is another one of the more exciting pieces of the Android SDK.
This portion of the SDK provides application developers APIs to display and manipulate maps,
as well as obtain real-time device-location information. We’ll cover these ideas in detail in
Chapter 7.

In Chapter 8, we’ll show you how to build and consume services in Android, specifically
HTTP services. The chapter will also cover interprocess communication (communication
between applications on the same device). Here is an example of doing an HttpPost in Android:

InputStream is = this.getAssets().open("data.xml");
HttpClient httpClient = new DefaultHttpClient();
HttpPost postRequest = new HttpPost("http://192.178.10.131/WS2/Upload.aspx");

byte[] data = IOUtils.toByteArray(is);

InputStreamBody isb = new InputStreamBody(
 new ByteArrayInputStream(data),"uploadedFile");
StringBody sb1 = new StringBody("someTextGoesHere");
StringBody sb2 = new StringBody("someTextGoesHere too");

MultipartEntity multipartContent = new MultipartEntity();
multipartContent.addPart("uploadedFile", isb);
multipartContent.addPart("one", sb1);
multipartContent.addPart("two", sb2);

15967ch01.indd 13 6/5/09 11:19:10 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 1 ■ INtrODUCING the aNDrOID COMpUtING pLatFOrM14

postRequest.setEntity(multipartContent);
HttpResponse res =httpClient.execute(postRequest);
res.getEntity().getContent().close();

Android Media and Telephony Components
Android has APIs that cover audio, video, and telephony components. Here is a quick example
of how to play an audio file from an Internet URL:

private void playAudio(String url)throws Exception
{
 mediaPlayer = new MediaPlayer();
 mediaPlayer.setDataSource(internetUrl);
 mediaPlayer.prepare();
 mediaPlayer.start();
}

And here’s an example of playing an audio file from the local device:

private void playLocalAudio()throws Exception
{
 //The file is located in the /res/raw directory and called "music_file.mp3"
 mediaPlayer = MediaPlayer.create(this, R.raw.music_file);
 mediaPlayer.start();
}

We’ll cover these audio and video APIs extensively in Chapter 9. The chapter will also
address the following aspects of the telephony API:

	 •	 Sending	and	receiving	Short	Message	Service	(SMS)	messages

	 •	 Monitoring	SMS	messages

	 •	 Managing	SMS	folders

	 •	 Placing	and	receiving	phone	calls

Here is an example taken from that chapter on sending an SMS message:

private void sendSmsMessage(String address,String message)throws Exception
{
 SmsManager smsMgr = SmsManager.getDefault();
 smsMgr.sendTextMessage(address, null, message, null, null);
}

Prior to the 1.5 release you could record audio but not video. Both audio and video
recording are accommodated in 1.5 through MediaRecorder. This is covered with examples in
Chapter 12. Chapter 12 also covers voice recognition, along with the input-method framework
(IMF), which allows a variety of inputs to be interpreted as text while typing into text controls.
The input methods include keyboard, voice, pen device, mouse, etc. This framework was origi-
nally designed as part of Java API 1.4; you can read more about it at the following Java site:

http://java.sun.com/j2se/1.4.2/docs/guide/imf/overview.html

15967ch01.indd 14 6/5/09 11:19:11 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 1 ■ INtrODUCING the aNDrOID COMpUtING pLatFOrM 15

Last but not least, Android ties all these concepts into an application by creating a single
XML file that defines what an application package is. This file is called the application’s mani-
fest file (AndroidManifest.xml). Here is an example:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.ai.android.HelloWorld"
 android:versionCode="1"
 android:versionName="1.0.0">
 <application android:icon="@drawable/icon" android:label="@string/app_name">
 <activity android:name=".HelloWorld"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

The Android manifest file is where activities are defined, where services and content pro-
viders are registered, and where permissions are declared. Details about the manifest file will
emerge throughout the book as we develop each idea.

Android Java Packages
One way to get a quick snapshot of the Android Platform is to look at the structure of Java
packages. Because Android deviates from the standard JDK distribution, it is important to
know at a high level what is supported and what is not. Here’s a brief description of the impor-
tant Java packages that are included in the Android SDK:

	 •	 android.app: Implements the Application model for Android. Primary classes include
Application, representing the start and stop semantics, as well as a number of activity-
related classes, controls, dialogs, alerts, and notifications.

	 •	 android.appwidget: Implements the mechanism for allowing applications to publish
their views in other applications, such as the home page. The primary classes include
AppWidgetHost, AppWidgetHostView, AppWidgetManager, AppWidgetProvider, and
AppWidgetProviderInfo. This package is available only in SDK 1.5.

	 •	 android.content: Implements the concepts of content providers. Content providers
abstract out data access from data stores. This package also implements the central
ideas around intents and Android Uniform Resource Identifiers (URIs).

	 •	 android.content.pm: Implements Package Manager–related classes. A package man-
ager knows about permissions, installed packages, installed providers, installed
services, installed components such as activities, and installed applications.

	 •	 android.content.res: Provides access to resource files both structured and unstructured.
The primary classes are AssetManager (for unstructured resources) and Resources.

15967ch01.indd 15 6/5/09 11:19:11 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 1 ■ INtrODUCING the aNDrOID COMpUtING pLatFOrM16

	 •	 android.database: Implements the idea of an abstract database. The primary interface
is the Cursor interface.

	 •	 android.database.sqlite: Implements the concepts from the android.database package
using SQLite as the physical database. Primary classes are SQLiteCursor, SQLiteDatabase,
SQLiteQuery, SQLiteQueryBuilder, and SQLiteStatement. However, most of your inter-
action is going to be with classes from the abstract android.database package.

	 •	 android.graphics: Contains the classes Bitmap, Canvas, Camera, Color, Matrix, Movie,
Paint, Path, Rasterizer, Shader, SweepGradient, and TypeFace.

	 •	 android.graphics.drawable: Implements drawing protocols and background images,
and allows animation of drawable objects.

	 •	 android.graphics.drawable.shapes: Implements shapes including ArcShape, OvalShape,
PathShape, RectShape, and RoundRectShape.

	 •	 android.hardware: Implements the physical Camera-related classes. This Camera repre-
sents the hardware camera, whereas android.graphics.Camera represents a graphical
concept that’s not related to a physical camera at all.

	 •	 android.inputmethodservice: Implements the interfaces and base abstract classes nec-
essary for writing input methods.

	 •	 android.location: Contains the classes Address, GeoCoder, Location, LocationManager,
and LocationProvider. The Address class represents the simplified XAL (Extensible
Address Language). GeoCoder allows you to get a latitude/longitude coordinate given an
address, and vice versa. Location represents the latitude/longitude.

	 •	 android.media: Contains the classes MediaPlayer, MediaRecorder, Ringtone,
AudioManager, and FaceDetector. MediaPlayer, which supports streaming, is used to
play audio and video. MediaRecorder is used to record audio and video. The Ringtone
class is used to play short sound snippets that could serve as ringtones and notifica-
tions. AudioManager is responsible for volume controls. You can use FaceDetector to
detect people’s faces in a bitmap.

	 •	 android.net: Implements the basic socket-level network APIs. Primary classes include
Uri, ConnectivityManager, LocalSocket, and LocalServerSocket.

	 •	 android.net.wifi: Manages WiFi connectivity. Primary classes include WifiManager and
WifiConfiguration. WifiManager is responsible for listing the configured networks and
the currently active WiFi network.

	 •	 android.opengl: Contains utility classes surrounding OpenGL ES operations. The pri-
mary classes of OpenGL ES are implemented in a different set of packages borrowed
from JSR 239. These packages are javax.microedition.khronos.opengles, javax.
microedition.khronos.egl, and javax.microedition.khronos.nio. These packages
are thin wrappers around the Khronos implementation of OpenGL ES in C and C++.

	 •	 android.os: Represents the OS services accessible through the Java programming lan-
guage. Some important classes include BatteryManager, Binder, FileObserver, Handler,
Looper, and PowerManager. Binder is a class that allows interprocess communication.
FileObserver keeps tabs on changes to files. You use Handler classes to run tasks on the
message thread, and Looper to run a message thread.

15967ch01.indd 16 6/5/09 11:19:11 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 1 ■ INtrODUCING the aNDrOID COMpUtING pLatFOrM 17

	 •	 android.preference: Allows applications the ability to have users manage their
preferences for that application in a uniform way. The primary classes are
PreferenceActivity, PreferenceScreen, and various Preference-derived classes
such as CheckBoxPreference and SharedPreferences.

	 •	 android.provider: Comprises a set of prebuilt content providers adhering to the
android.content.ContentProvider interface. The content providers include Contacts,
MediaStore, Browser, and Settings. This set of interfaces and classes stores the meta-
data for the underlying data structures.

	 •	 android.sax: Contains an efficient set of Simple API for XML (SAX) parsing
utility classes. Primary classes include Element, RootElement, and a number of
ElementListener interfaces.

	 •	 android.speech: Contains constants for use with speech recognition. This package is
available only in releases 1.5 and later.

	 •	 android.telephony: Contains the classes CellLocation, PhoneNumberUtils, and
TelephonyManager. A TelephonyManager lets you determine cell location, phone number,
network-operator name, network type, phone type, and Subscriber Identity Module
(SIM) serial number.

	 •	 android.telephony.gsm: Allows you to gather cell location based on cell towers and
also hosts classes responsible for SMS messaging. This package is called GSM because
Global System for Mobile Communication is the technology that originally defined the
SMS data-messaging standard.

	 •	 android.text: Contains text-processing classes.

	 •	 android.text.method: Provides classes for entering text input for a variety of controls.

	 •	 android.text.style: Provides a number of styling mechanisms for a span of text.

	 •	 android.utils: Contains the classes Log, DebugUtils, TimeUtils, and Xml.

	 •	 android.view: Contains the classes Menu, View, ViewGroup, and a series of listeners and
callbacks.

	 •	 android.view.animation: Provides support for tweening animation. The main classes
include Animation, a series of interpolators for animation, and a set of specific animator
classes that include AlphaAnimation, ScaleAnimation, TranslationAnimation, and
RotationAnimation.

	 •	 android.view.inputmethod: Implements the input-method framework architecture.
This package is available only in releases 1.5 and later.

	 •	 android.webkit: Contains classes representing the web browser. The primary classes
include WebView, CacheManager, and CookieManager.

	 •	 android.widget: Contains all of the UI controls usually derived from the View class.
Primary widgets include Button, Checkbox, Chronometer, AnalogClock, DatePicker,
DigitalClock, EditText, ListView, FrameLayout, GridView, ImageButton, MediaController,
ProgressBar, RadioButton, RadioGroup, RatingButton, Scroller, ScrollView, Spinner,
TabWidget, TextView, TimePicker, VideoView, and ZoomButton.

	 •	 com.google.android.maps: Contains the classes MapView, MapController, and MapActivity,
essentially classes required to work with Google maps.

15967ch01.indd 17 6/5/09 11:19:11 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 1 ■ INtrODUCING the aNDrOID COMpUtING pLatFOrM18

These are some of the critical Android-specific packages. From this list you can see the
depth of the Android core platform.

■Note In all, the Android Java API contains more than 36 packages and more than 700 classes.

In addition, Android provides a number of packages in the java.* namespace.
These include awt.font, io, lang, lang.annotation, lang.ref, lang.reflect, math, net, nio,
nio.channels, nio.channels.spi, nio.charset, security, security.acl, security.cert,
security.interfaces, security.spec, sql, text, util, util.concurrent, util.concurrent.
atomic, util.concurrent.locks, util.jar, util.logging, util.prefs, util.regex, and util.zip.

Android comes with these packages from the javax namespace: crypto, crypto.spec,
microedition.khronos.egl, microedition.khronos.opengles, net, net.ssl, security.auth,
security.auth.callback, security.auth.login, security.auth.x500, security.cert, sql, xml,
and xmlparsers.

In addition, it contains a lot of packages from org.apache.http.*. It also carries org.json,
org.w3c.dom, org.xml.sax, org.xml.sax.ext, org.xml.sax.helpers, org.xmlpull.v1, and org.
xmlpull.v1.sax2.

Together, these numerous packages provide a rich computing platform to write applica-
tions for handheld devices.

Taking Advantage of Android Source Code
During these early releases of Android, documentation is a bit “wanting” in places. When you
run into that situation, it is worthwhile exploring Android source code to fill the gaps.

The details of the Android source distribution are published at http://source.android.
com. The code was open sourced around October 2008 (read the announcement at http://
source.android.com/posts/opensource). One of the Open Handset Alliance’s goals was to
make Android a free and fully customizable mobile platform. The announcement strongly
suggests that the Android Platform is a fully capable mobile computing platform with no gaps.
The open source model allows contributions from noncore team members within the public
communities.

As indicated, Android is a platform and not just one project. You can see the scope and the
number of projects at http://source.android.com/projects.

The source code of Android and all its projects is managed by the Git source-code control
system. Git (http://git.or.cz/) is an open source source-control system designed to handle
large and small projects with speed and convenience. The Linux kernel and Ruby on Rails
projects also rely on Git for version control. The complete list of Android projects in the Git
repository appears at http://android.git.kernel.org/.

You can download any of these projects using the tools provided by Git and described
at the product’s web site. Some of the primary projects include Dalvik, frameworks/base (the
android.jar file), Linux kernel, and a number of external libraries such as Apache HTTP librar-
ies (apache-http). The core Android applications are also hosted here. Some of these core
applications include: AlarmClock, Browser, Calculator, Calendar, Camera, Contacts, Email,
GoogleSearch, HTML Viewer, IM, Launcher, Mms, Music, PackageInstaller, Phone, Settings,
SoundRecorder, Stk, Sync, Updater, and VoiceDialer.

15967ch01.indd 18 6/5/09 11:19:11 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 1 ■ INtrODUCING the aNDrOID COMpUtING pLatFOrM 19

The Android projects also include the “Provider” projects. “Provider” projects are like
databases in Android that wrap their data into RESTful services. These projects are Calen-
darProvider, ContactsProvider, DownloadProvider, DrmProvider, GoogleContactsProvider,
GoogleSubscribedFeedsProvider, ImProvider, MediaProvider, SettingsProvider, Subscribed-
FeedsProvider, and TelephonyProvider.

As a programmer, you will be most interested in the source code that makes up the
android.jar file. (If you’d rather download the entire platform and build it yourself, refer to
the documentation available at http://source.android.com/download.) You can download the
source for this .jar file by typing in the following URL:

http://git.source.android.com/➥

?p=platform/frameworks/base.git;a=snapshot;h=HEAD;sf=tgz

This is one of the general-purpose URLs you can use to download Git projects. On Win-
dows, you can unzip this file using pkzip. Although you can download and unzip the source,
it might be more convenient to just look at these files online if you don’t need to debug the
source code through your IDE. Git also allows you to do this. For example, you can browse
through android.jar source files by visiting this URL:

http://android.git.kernel.org/?p=platform/frameworks/base.git;a=summary

However, you have to do some work after you visit this page. Pick grep from the drop-
down list and enter some text in the search box. Click one of the resulting file names to open
that source file in your browser. This facility is convenient for a quick lookup of source code.

At times the file you are looking for might not be in the frameworks/base directory or proj-
ect. In that case, you need to find the list of projects and search each one step by step. The URL
for this list is http://android.git.kernel.org/.

You cannot grep across all projects, so you will need to know which project belongs to
which facility in Android. For example, the graphics-related libraries in the Skia project are
available here:

http://android.git.kernel.org/?p=platform/external/skia.git;a=summary

Summary
In this chapter, we wanted to pique your curiosity about Android. You learned that Android
programming is done in Java and how the Open Handset Alliance is propelling the Android
effort. You saw how handhelds are becoming general-purpose computing devices, and you got
an overview of the Dalvik VM, which makes it possible to run a complex framework on a con-
strained handset.

You also saw how Android’s approach compares to that of Java ME. You explored
Android’s software stack and got a taste of its programming concepts, which we’ll cover in
subsequent chapters. You saw some sample code and learned where to find and download
Android source code.

We hope this chapter has convinced you that you can program productively for the
Android Platform without facing too many hurdles. With confidence, we welcome you to step
into the rest of the book for an in-depth understanding of the Android SDK.

15967ch01.indd 19 6/5/09 11:19:11 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

C h a p t e r 2

Getting Your Feet Wet

In the last chapter, we provided an overview of Android’s history and we hinted at concepts
we’ll cover in the rest of the book. So by this point, you’re probably eager to get your hands
on some code. We’ll start by showing you what you need to start building applications with
the Android Software Development Kit (SDK) and help you set up your development environ-
ment. Next, we’ll baby-step you through a “Hello World!” application and dissect a slightly
larger application after that. Then we’ll explain the Android application lifecycle and end with
a brief discussion about debugging your applications.

To build applications for Android, you’ll need the Java SE Development Kit (JDK), the
Android SDK, and a development environment. Strictly speaking, you can develop your appli-
cations using a primitive text editor, but for the purposes of this book, we’ll use the commonly
available Eclipse IDE. The examples in this book target Android SDKs 1.1 and 1.5. (Chapters 12
and 13 focus on material specific to Android 1.5.) The Android SDK requires JDK 5 or higher,
and we use JDK 6 with the examples. Moreover, the Android SDK requires Eclipse 3.3 or
higher; we use Eclipse 3.4 (Ganymede).

Finally, to make your life easier, you’ll want to use Android Development Tools (ADT).
ADT is an Eclipse plug-in that supports building Android applications with the Eclipse IDE.
In fact, we built all the examples in this book using the Eclipse IDE (version 3.4) with the
ADT tool.

Setting Up Your Environment
To build Android applications, you need to establish a development environment. In this sec-
tion, we are going to walk you through downloading JDK 6, the Eclipse IDE, the Android SDK,
and ADT. We’ll also help you configure Eclipse to build Android applications.

Downloading JDK 6 and Eclipse 3.4
The first thing you’ll need is the JDK. As we said earlier, the Android SDK 1.0 requires JDK 5 or
higher, and we developed the examples using JDK 6. To get started, download JDK 6 from the
Sun web site: http://java.sun.com/javase/downloads/index.jsp.

21

15967ch02.indd 21 6/5/09 11:18:37 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 2 ■ GettING YOUr Feet Wet22

After you download the JDK, you’ll want to install it and set the JAVA_HOME environment
variable to point to the JDK install folder. On a Windows machine, you can do this from a com-
mand line by typing this code:

set JAVA_HOME=[YOUR JDK_PATH_GOES_HERE]

Now, you can download the Eclipse IDE for Java Developers (not the edition for Java EE).
Again, the examples in this book use Eclipse 3.4 (on a Windows environment), which you can
download from http://www.eclipse.org/downloads/.

Downloading the Android SDK
To build applications for Android, you need the Android SDK. The SDK includes an emulator
so you don’t need a mobile device with the Android OS to develop Android applications. In
fact, we developed the examples in this book on a Windows XP machine.

You can download the Android SDK from http://code.google.com/android/download.
html. The Android SDK ships as a .zip file for Windows, so you need to unzip it. Unzip the file
to c:\AndroidSDK\, after which you should see the files shown in Figure 2-1.

Figure 2-1. Contents of the Android SDK

Installing Android Development Tools (ADT)
Now you need to install ADT, an Eclipse plug-in that helps you build Android applications.
Specifically, ADT integrates with Eclipse to provide facilities for you to create, test, and debug
Android applications. You’ll need to use the Software Updates facility within Eclipse to per-
form the installation. If you are using Android 1.1, follow the instructions below. If you are
using Android 1.5, refer to Chapter 12 for ADT installation. To get started, launch the Eclipse
IDE and follow these instructions:

 1. Select the Help menu item and choose the “Software Updates…” option.

 2. In the “Software Updates and Add-ons” dialog, select the “Available Software” tab.

 3. Click the “Add Site…” button and set the “Location” field to the ADT download site:
https://dl-ssl.google.com/android/eclipse/. Click the “OK” button to add the site.
You should now see the corresponding entry in the “Available Software” list as shown
in Figure 2-2.

 4. Expand the added entry by selecting the node in the list. You should see an entry
named “Developer Tools” with two child nodes: “Android Development Tools” and
“Android Editors.” Select the parent node “Developer Tools” and click the “Install” but-
ton to install ADT.

15967ch02.indd 22 6/5/09 11:18:37 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 2 ■ GettING YOUr Feet Wet 23

Figure 2-2. Installing ADT using the Software Updates feature in Eclipse

Eclipse will then download ADT and install it. You’ll need to restart Eclipse for the new
plug-in to show up in the IDE. The final step to get ADT functional is to point it to the Android
SDK. Select the Window menu and choose Preferences. In the “Preferences” dialog box, select
the “Android” node and set the “SDK Location” field to the path of the Android SDK (see
Figure 2-3). Then click the “OK” button. Note that you might see a dialog box asking if you
want to send usage statistics to Google concerning the Android SDK.

Figure 2-3. Pointing ADT to the Android SDK

15967ch02.indd 23 6/5/09 11:18:38 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 2 ■ GettING YOUr Feet Wet24

You are almost ready for your first Android application—we have to briefly discuss the
fundamental concepts of an Android application first.

Learning the Fundamental Components
Every application framework has some key components that developers need to understand
before they can begin to write applications based on the framework. For example, you would
need to understand JavaServer Pages (JSP) and servlets in order to write Java 2 Platform, Enter-
prise Edition (J2EE) applications. Similarly, you need to understand activities, views, intents,
content providers, services, and the AndroidManifest.xml file when you build applications for
Android. We will briefly discuss these fundamental concepts here so that you can follow the
rest of this chapter, and we’ll discuss them in more detail throughout the book.

View
The concept of a view in J2EE and Swing carries over to Android. Views are UI elements that
form the basic building blocks of a user interface. Views are hierarchical and they know how to
draw themselves.

Activity
An activity is a user interface concept. An activity usually represents a single screen in your
application. It generally contains one or more views, but it doesn’t have to. Moreover, other
concepts in Android could better represent a viewless activity (as you’ll see in the “Service”
section shortly).

Intent
An intent generically defines an “intention” to do some work. Intents encapsulate several con-
cepts, so the best approach to understanding them is to see examples of their use. You can use
intents to perform the following tasks, for instance:

	 •	 Broadcast	a	message

	 •	 Start	a	service

	 •	 Launch	an	activity

	 •	 Display	a	web	page	or	a	list	of	contacts

	 •	 Dial	a	phone	number	or	answer	a	phone	call

Intents are not always initiated by your application—they’re also used by the system to
notify your application of specific events (such as the arrival of a text message).

Intents can be explicit or implicit. If you simply say that you want to display a URL, the
system will decide what component will fulfill the intention. You can also provide specific
information about what should handle the intention. Intents loosely couple the action and
action handler.

15967ch02.indd 24 6/5/09 11:18:38 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 2 ■ GettING YOUr Feet Wet 25

Content Provider
Data sharing among mobile applications on a device is common. Therefore, Android defines a
standard mechanism for applications to share data (such as a list of contacts) without expos-
ing the underlying storage, structure, and implementation. Through content providers, you
can expose your data and have your applications use data from other applications.

Service
Services in Android resemble services you see in Windows or other platforms—they’re
background processes that can potentially run for a long time. Android defines two types of
services: local services and remote services. Local services are components that are only acces-
sible by the application that is hosting the service. Conversely, remote services are services
that are meant to be accessed remotely by other applications running on the device.

An example of a service is a component that is used by an e-mail application to poll for
new messages. This kind of service might be a local service if the service is not used by other
applications running on the device. If several applications use the service, then the service
would be implemented as a remote service. The difference, as you’ll see in Chapter 8, is in
startService() vs. bindService().

You can use existing services and also write your own services by extending the Service
class.

AndroidManifest.xml
AndroidManifest.xml, which is similar to the web.xml file in the J2EE world, defines the con-
tents and behavior of your application. For example, it lists your app’s activities and services,
along with the permissions the application needs to run.

Hello World!
Now you’re ready to build your first Android application. You’ll start by building a simple
“Hello World!” program. Create the skeleton of the application by following these steps:

 1. Launch Eclipse and select File ➤ New ➤ Project. In the “New Project” dialog box, select
“Android” and then click “Next.” You will then see the “New Android Project” dialog
box, as shown in Figure 2-4.

 2. As shown in Figure 2-4, enter HelloAndroid as the project name, pro.android as
the package name, HelloActivity as the activity name, and HelloAndroidApp as the
application name. Note that for a real application, you’ll want to use a meaningful
application name because it will appear in the application’s title bar. Also note that
the default location for the project will be derived from the Eclipse workspace loca-
tion. In this case, your Eclipse workspace is c:\Android, and the New Project Wizard
appends the name of the new application to the workspace location to come up with
c:\Android\HelloAndroid\.

15967ch02.indd 25 6/5/09 11:18:38 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 2 ■ GettING YOUr Feet Wet26

Figure 2-4. Using the New Project Wizard to create an Android application

 3. Click the “Finish” button, which tells ADT to generate the project skeleton for you. For
now, open the HelloActivity.java file under the src folder and modify the onCreate()
method as follows:

/** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 /** create a TextView and write Hello World! */
 TextView tv = new TextView(this);
 tv.setText("Hello World!");
 /** set the content view to the TextView */
 setContentView(tv);
 }

Add an import statement for android.widget.TextView. To run the application, you’ll need
to create an Eclipse launch configuration (see Figure 2-5).

15967ch02.indd 26 6/5/09 11:18:38 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 2 ■ GettING YOUr Feet Wet 27

Figure 2-5. Configuring an Eclipse launch configuration to run the “Hello World!” app

Create the Eclipse launch configuration by following these steps:

 1. Select Run ➤ Run Configurations.

 2. In the “Run Configurations” dialog box, double-click “Android Application” in the left
pane. The wizard will insert a new configuration named “New Configuration.”

 3. Rename the configuration RunHelloWorld.

 4. Click	the	“Browse…”	button	and	select	the	HelloAndroid	project.

 5. Under “Launch Action,” select “Launch” and select “pro.android.HelloActivity” from
the drop-down list.

 6. Click “Apply” and then “Run.” You should see the emulator launched with the
HelloAndroid project (see Figure 2-6).

15967ch02.indd 27 6/5/09 11:18:38 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 2 ■ GettING YOUr Feet Wet28

■Note It might take the emulator a minute to emulate the device-bootup process. After starting up, you
should see HelloAndroidApp running in the emulator, as shown in Figure 2-6. In addition, be aware that the
emulator starts other applications in the background during the startup process, so you might see a warning
or error message from time to time. If you see an error message, you can generally dismiss it to allow the
emulator to go to the next step in the startup process. For example, if you run the emulator and see a mes-
sage like “application abc is not responding,” you can either wait for the application to start or simply ask the
emulator to forcefully close the application. Generally, you should wait and let the emulator start up cleanly if
you have the patience.

Figure 2-6. HelloAndroidApp running in the emulator

Now you know how to create a new Android application and run it in the emulator. Next,
we’ll discuss the pieces that make the simple program display in the emulator. We’ll begin by
talking about an Android application’s artifacts and structure.

Exploring the Structure of an Android Application
Although the size and complexity of Android applications can vary greatly, their structures will
be similar. Figure 2-7 shows the structure of the “Hello World!” app you just built.

15967ch02.indd 28 6/5/09 11:18:38 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 2 ■ GettING YOUr Feet Wet 29

Figure 2-7. The structure of the “Hello World!” app

Android applications have some artifacts that are required and some that are optional.
Table 2-1 summarizes the elements of an Android application. (Note that Android 1.5 adds a
few elements; see Chapter 12 for details.)

Table 2-1. The Artifacts of an Android Application

Artifact Description Required?

AndroidManifest.xml The Android application descriptor file. This file defines the
activities, content providers, services, and intent receivers
of the application. You can also use this file to declaratively
define permissions required by the application, as well as
grant specific permissions to other applications using the
services of the application. Moreover, the file can contain in-
strumentation detail that you can use to test the application
or another application.

Yes

src A folder containing all of the source code of the application. Yes

assets An arbitrary collection of folders and files. No

res A folder containing the resources of the application. It’s the
parent folder of drawable, anim, layout, values, xml, and raw.

Yes

drawable A folder containing the images or image-descriptor files used
by the application.

No

anim A folder containing the XML-descriptor files that describe the
animations used by the application.

No

layout A folder containing views of the application. You should cre-
ate your application’s views by using XML descriptors rather
than coding them.

No

values A folder containing other resources used by the application.
All the resources in the folder are also defined with XML
descriptors. Examples of resources included in this folder
include strings, styles, and colors.

No

xml A folder containing additional XML files used by the application. No

raw A folder containing additional data—possibly non-XML
data—that is required by the application.

No

15967ch02.indd 29 6/5/09 11:18:38 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 2 ■ GettING YOUr Feet Wet30

As you can see from Table 2-1, an Android application is primarily made up of three
pieces: the application descriptor, a collection of various resources, and the application’s
source code. If you put aside the AndroidManifest.xml file for a moment, you can view an
Android app in this simple way: you have some business logic implemented in code, and
everything else is a resource. This basic structure resembles the basic structure of a J2EE
app, where the resources correlate to JSPs, the business logic correlates to servlets, and the
AndroidManifest.xml file correlates to the web.xml file.

You can also compare J2EE’s development model to Android’s development model. In
J2EE, the philosophy of building views is to build them using markup language. Android has
also adopted this approach, although the markup in Android is XML. You benefit from this
approach because you don’t have to hard-code your application’s views; you can modify the
look and feel of the application by editing the markup.

It is also worth noting a few constraints regarding resources. First, Android supports only
a linear list of files within the predefined folders under res. For example, it does not support
nested folders under the layout folder (or the other folders under res). Second, there are some
similarities between the assets folder and the raw folder under res.	Both	folders	can	contain	
raw files, but the files within raw are considered resources and the files within assets are not.
So the files within raw	will	be	localized,	accessible	through	resource	IDs,	and	so	on.	But	the	
contents of the assets folder are considered general-purpose contents, to be used without
resource constraints and support. Note that because the contents of the assets folder are not
considered resources, you can put an arbitrary hierarchy of folders and files within it. (We’ll
talk a lot more about resources in Chapter 3.)

■Note You might have noticed that XML is used quite heavily with Android. We all know that XML is a
bloated data format, so this begs the question, “Does it make sense to rely on XML when you know your
target is going to be a device with limited resources?” It turns out that the XML we create during devel-
opment is actually compiled down to binary using the Android Asset Packaging Tool (AAPT). Therefore,
when your application is installed on a device, the files on the device are stored as binary. When the file
is needed at runtime, the file is read in its binary form and is not transformed back into XML. This gives
us the benefits of both worlds—we get to work with XML and not have to worry about taking up valuable
resources on the device.

Analyzing the Notepad Application
Not only do you know how to create a new Android application and run it in the emulator, but
you also have a feel for the artifacts of an Android application. Next, we are going to look at the
Notepad application that ships with the Android SDK. Notepad’s complexity falls between that
of the “Hello World!” app and a full-blown Android application, so analyzing its components
will give you some realistic insight into Android development.

15967ch02.indd 30 6/5/09 11:18:38 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 2 ■ GettING YOUr Feet Wet 31

Loading and Running the Notepad Application
In this section, we’ll show you how to load the Notepad application into the Eclipse IDE and run
it	in	the	emulator.	Before	we	start,	you	should	know	that	the	Notepad	application	implements	
several use cases. For example, the user can create a new note, edit an existing note, delete a note,
view the list of created notes, and so on. When the user launches the application, there aren’t any
saved notes yet, so the user sees an empty note list. If the user presses the Menu key, the applica-
tion presents him with a list of actions, one of which allows him to add a new note. After he adds
the note, he can edit or delete the note by selecting the corresponding menu option.

Follow these steps to load the Notepad sample into the Eclipse IDE:

 1. Start Eclipse.

 2. Go to File ➤ New ➤ Project.

 3. In the “New Project” dialog, select Android ➤ Android Project.

 4. In the “New Android Project” dialog, select “Create project from existing source” and
set the “Location” field to the path of the Notepad application. Note that the Notepad
application is located in c:\AndroidSDK\samples\, which you downloaded earlier. After
you set the path, the dialog reads the AndroidManifest.xml file and prepopulates the
remaining fields in the “New Android Project” dialog box.

 5. Click the “Finish” button.

You should now see the NotesList application in your Eclipse IDE. To run the applica-
tion, you could create a launch configuration (as you did for the “Hello World!” application),
or you can simply right-click the project, choose Run As, and select Android Application. This
will launch the emulator and install the application on it. After the emulator has completed
loading (you’ll see the date and time displayed in the center of the emulator’s screen), press
the Menu button to view the Notepad application. Play around with the application for a few
minutes to become familiar with it.

Dissecting the Application
Now let’s study the contents of the application (see Figure 2-8).

Figure 2-8. Contents of the Notepad application

15967ch02.indd 31 6/5/09 11:18:38 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 2 ■ GettING YOUr Feet Wet32

As you can see, the application contains several .java files, a few .png images, three views
(under the layout folder), and the AndroidManifest.xml file. If this were a command-line appli-
cation, you would start looking for the class with the Main method. So what’s the equivalent of
a Main method in Android?

Android defines an entry-point activity, also called the top-level activity. If you look in the
AndroidManifest.xml file, you’ll find one provider and three activities. The NotesList activ-
ity defines an intent-filter for the action android.intent.action.MAIN and for the category
android.intent.category.LAUNCHER. When an Android application is asked to run, the host
loads the application and reads the AndroidManifest.xml file. It then looks for, and starts, an
activity or activities with an intent-filter that has the MAIN action with a category of LAUNCHER, as
shown here:

<intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
</intent-filter>

After the host finds the activity it wants to run, it must resolve the defined activity to an
actual class. It does this by combining the root package name and the activity name, which in
this case is com.example.android.notepad.NotesList (see Listing 2-1).

Listing 2-1. The AndroidManfiest.xml File

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.android.notepad"
>
 <application android:icon="@drawable/app_notes"
 android:label="@string/app_name"
 >
 <provider android:name="NotePadProvider"
 android:authorities="com.google.provider.NotePad"
 />
 <activity android:name="NotesList"
 android:label="@string/title_notes_list">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category
 android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 <intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <action android:name="android.intent.action.EDIT" />
 <action android:name ="android.intent.category.DEFAULT" />
 <data android:mimeTyp="android.intent.action.PICK" />
 <category android:name
 e="vnd.android.cursor.dir/vnd.google.note" />
 </intent-filter>

15967ch02.indd 32 6/5/09 11:18:38 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 2 ■ GettING YOUr Feet Wet 33

 <intent-filter>
 <action android:name="android.intent.action.GET_CONTENT" />
 <category android:name="android.intent.category.DEFAULT" />
 <data
 android:mimeType="vnd.android.cursor.item/vnd.google.note" />
 </intent-filter>
 </activity>
…
</manfiest>

The application’s root package name is defined as an attribute of the <manifest> element
in the AndroidManifest.xml file, and each activity has a name attribute.

Once the entry-point activity is determined, the host starts the activity and the onCreate()
method is called. Let’s have a look at NotesList.onCreate(), shown in Listing 2-2.

Listing 2-2. The onCreate Method

public class NotesList extends ListActivity {
@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setDefaultKeyMode(DEFAULT_KEYS_SHORTCUT);
 Intent intent = getIntent();
 if (intent.getData() == null) {
 intent.setData(Notes.CONTENT_URI);
 }

 getListView().setOnCreateContextMenuListener(this);

 Cursor cursor = managedQuery(getIntent().getData(),
PROJECTION, null, null,
 Notes.DEFAULT_SORT_ORDER);

 SimpleCursorAdapter adapter = new SimpleCursorAdapter(this,
R.layout.noteslist_item, cursor, new String[] { Notes.TITLE },
new int[] { android.R.id.text1 });
 setListAdapter(adapter);
}
}

Activities in Android are usually started with an intent, and one activity can start another
activity. The onCreate() method checks whether the current activity’s intent has data (notes).
If not, it sets the URI to retrieve the data on the intent. We’ll learn in Chapter 3 that Android
accesses data through content providers that operate on URIs. In this case, the URI provides
enough information to retrieve data from a database. The constant Notes.CONTENT_URI is
defined as a static final in Notepad.java:

15967ch02.indd 33 6/5/09 11:18:38 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 2 ■ GettING YOUr Feet Wet34

public static final Uri CONTENT_URI =
 Uri.parse("content://" + AUTHORITY + "/notes");

The Notes class is an inner class of the Notepad class. For now, know that the preceding
URI tells the content provider to get all of the notes. If the URI looked something like this

public static final Uri CONTENT_URI =
 Uri.parse("content://" + AUTHORITY + "/notes/11");

then the consuming content provider would return (update or delete) the note with an ID
equal to 11. We will discuss content providers and URIs in depth in Chapter 3.

The NotesList class extends the ListActivity class, which knows how to display list-
oriented data. The items in the list are managed by an internal ListView (a UI component),
which displays the notes in the list vertically (by default). After setting the URI on the activi-
ty’s intent, the activity registers to build the context menu for notes. If you’ve played with the
application, you probably noticed that context-sensitive menu items are displayed depend-
ing on your selection. For example, if you select an existing note, the application displays
“Edit note” and “Edit title.” Similarly, if you don’t select a note, the application shows you
the “Add note” option.

Next, we see the activity execute a managed query and get a cursor for the result. A
managed query means that Android will manage the returned cursor. In other words, if the
application has to be unloaded or reloaded, neither the application nor the activity has to
worry about positioning the cursor, loading it, or unloading it. The parameters to managedQuery(),
shown in Table 2-2, are interesting.

Table 2-2. Parameters to Activity.managedQuery()

Parameter Data Type Description

URI Uri URI of the content provider

projection String[] The column to return (column names)

selection String Optional where clause

selectionArgs String[] The arguments to the selection, if the query contains ?s

sortOrder String Sort order to be used on the result set

We will discuss managedQuery() and its sibling query() later in this section and also in
Chapter 3. For now, realize that a query in Android returns tabular data. The projection
parameter allows you to define the columns you are interested in. You can also reduce the
overall result set and sort the result set using a SQL order-by clause (such as asc or desc).
Also note that an Android query must return a column named _ID to support retrieving an
individual record. Moreover, you must know the type of data returned by the content pro-
vider—whether a column contains a string, int, binary, or the like.

After the query is executed, the returned cursor is passed to the constructor of
SimpleCursorAdapter, which adapts records in the dataset to items in the user interface
(ListView). Look closely at the parameters passed to the constructor of SimpleCursorAdapter:

 SimpleCursorAdapter adapter =
 new SimpleCursorAdapter(this, R.layout.noteslist_item,
cursor, new String[] { Notes.TITLE }, new int[] { android.R.id.text1 });

15967ch02.indd 34 6/5/09 11:18:38 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 2 ■ GettING YOUr Feet Wet 35

Specifically, look at the second parameter: an identifier to the view that represents the
items in the ListView. As you’ll see in Chapter 3, Android provides an auto-generated utility
class that provides references to the resources in your project. This utility class is called the
R class because its name is R.java. When you compile your project, the AAPT generates the R
class for you from the resources defined within your res folder. For example, you could put all
your string resources into the values folder and the AAPT will generate a public static identi-
fier for each string. Android supports this generically for all of your resources. For example,
in the constructor of SimpleCursorAdapter, the NotesList activity passes in the identifier of
the view that displays an item from the notes list. The benefit of this utility class is that you
don’t have to hard-code your resources and you get compile-time reference checking. In other
words, if a resource is deleted, the R class will lose the reference and any code referring to the
resource will not compile.

Let’s look at another important concept in Android that we alluded to earlier: the
onListItemClick method of NotesList (see Listing 2-3).

Listing 2-3. The onListItemClick Method

@Override
 protected void onListItemClick(ListView l, View v, int position, long id) {
 Uri uri = ContentUris.withAppendedId(getIntent().getData(), id);

 String action = getIntent().getAction();
 if (Intent.ACTION_PICK.equals(action) ||
Intent.ACTION_GET_CONTENT.equals(action)) {
 setResult(RESULT_OK, new Intent().setData(uri));
 } else {
 startActivity(new Intent(Intent.ACTION_EDIT, uri));
 }
 }

The onListItemClick method is called when a user selects a note in the UI. The method
demonstrates that one activity can start another activity. When a note is selected, the method
creates a URI by taking the base URI and appending the selected note’s ID to it. The URI is
then passed to startActivity() with a new intent. startActivity() is one way to start an
activity: it starts an activity but doesn’t report on the results of the activity after it completes.
Another way to start an activity is to use startActivityForResult(). With this method, you can
start another activity and register a callback to be used when the activity completes. For exam-
ple, you’ll want to use startActivityForResult() to start an activity to select a contact because
you want that contact after the activity completes.

At this point, you might be wondering about user interaction with respect to activities.
For example, if the running activity starts another activity, and that activity starts an activity,
and so on, then what activity can the user work with? Can she manipulate all the activities
simultaneously, or is she restricted to a single activity? Actually, activities have a defined
lifecycle. They’re maintained on an activity stack, with the running activity at the top. If the
running activity starts another activity, the first running activity moves down the stack and
the new activity moves to the top. Activities lower in the stack can be in a so-called “paused”
or “stopped” state. A paused activity is partially or fully visible to the user; a stopped activ-
ity is not visible to the user. The system can kill paused or stopped activities if it deems that
resources are needed elsewhere.

15967ch02.indd 35 6/5/09 11:18:39 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 2 ■ GettING YOUr Feet Wet36

Let’s move on to data persistence now. The notes that a user creates are saved to an
actual database on the device. Specifically, the Notepad application’s backing store is a
SQLite database. The managedQuery() method that we discussed earlier eventually resolves
to data in a database, via a content provider. Let’s examine how the URI, passed to
managedQuery(), results in the execution of a query against a SQLite database. Recall that
the URI passed to managedQuery() looks like this:

public static final Uri CONTENT_URI =
Uri.parse("content://" + AUTHORITY + "/notes");

Content URIs always have this form: content://, followed by the authority, followed
by	a	general	segment	(context-specific).	Because	the	URI	doesn’t	contain	the	actual	data,	
it somehow results in the execution of code that produces data. What is this connection?
How is the URI reference resolved to code that produces data? Is the URI an HTTP service
or a web service? Actually, the URI, or the authority portion of the URI, is configured in the
AndroidManifest.xml file as a content provider:

<provider android:name="NotePadProvider"
 android:authorities="com.google.provider.NotePad"/>

When Android sees a URI that needs to be resolved, it pulls out the authority portion of it
and looks up the ContentProvider class configured for the authority. In the Notepad applica-
tion, the AndroidManifest.xml file contains a class called NotePadProvider configured for the
com.google.provider.NotePad authority. Listing 2-4 shows a small portion of the class.

Listing 2-4. The NotePadProvider Class

public class NotePadProvider extends ContentProvider
{

 @Override
 public Cursor query(Uri uri, String[] projection, String selection,
 String[] selectionArgs,String sortOrder) {}

 @Override
 public Uri insert(Uri uri, ContentValues initialValues) {}

 @Override
 public int update(Uri uri, ContentValues values, String where,
String[] whereArgs) {}

 @Override
 public int delete(Uri uri, String where, String[] whereArgs) {}

 @Override
 public String getType(Uri uri) {}

 @Override
 public boolean onCreate() {}

15967ch02.indd 36 6/5/09 11:18:39 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 2 ■ GettING YOUr Feet Wet 37

 private static class DatabaseHelper extends SQLiteOpenHelper {}

 @Override
 public void onCreate(SQLiteDatabase db) {}

 @Override
 public void onUpgrade(SQLiteDatabase db,
int oldVersion, int newVersion) {
 //...
 }
 }
}

Clearly, you can see that the NotePadProvider class extends the ContentProvider class. The
ContentProvider class defines six abstract methods, four of which are CRUD (Create, Read,
Update, Delete) operations. The other two abstract methods are onCreate() and getType().
onCreate() is called when the content provider is created for the first time. getType() provides
the MIME type for the result set (you’ll see how MIME types work when you read Chapter 3).

The other interesting thing about the NotePadProvider class is the internal DatabaseHelper
class, which extends the SQLiteOpenHelper class. Together, the two classes take care of initial-
izing the Notepad database, opening and closing it, and performing other database tasks.
Interestingly, the DatabaseHelper class is just a few lines of custom code (see Listing 2-5),
while the Android implementation of SQLiteOpenHelper does most of the heavy lifting.

Listing 2-5. The DatabaseHelper Class

 private static class DatabaseHelper extends SQLiteOpenHelper {

 DatabaseHelper(Context context) {
 super(context, DATABASE_NAME, null, DATABASE_VERSION);
 }

 @Override
 public void onCreate(SQLiteDatabase db) {
 db.execSQL("CREATE TABLE " + NOTES_TABLE_NAME + " ("
 + Notes._ID + " INTEGER PRIMARY KEY,"
 + Notes.TITLE + " TEXT,"
 + Notes.NOTE + " TEXT,"
 + Notes.CREATED_DATE + " INTEGER,"
 + Notes.MODIFIED_DATE + " INTEGER"
 + ");");
 }

 //…
}

15967ch02.indd 37 6/5/09 11:18:39 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 2 ■ GettING YOUr Feet Wet38

As shown in Listing 2-5, the onCreate() method creates the Notepad table. Notice that the
class’s constructor calls the superclass’s constructor with the name of the table. The superclass
will call the onCreate() method only if the table does not exist in the database. Also notice that
one of the columns in the Notepad table is the _ID column we discussed in the section “Dissect-
ing the Application.”

Now let’s look at one of the CRUD operations: the insert() method (see Listing 2-6).

Listing 2-6. The insert() Method

//…
SQLiteDatabase db = mOpenHelper.getWritableDatabase();
 long rowId = db.insert(NOTES_TABLE_NAME, Notes.NOTE, values);
 if (rowId > 0) {
 Uri noteUri = ContentUris.withAppendedId(
NotePad.Notes.CONTENT_URI, rowId);
 getContext().getContentResolver().notifyChange(noteUri, null);
 return noteUri;
 }

The insert() method uses its internal DatabaseHelper instance to access the database and
then inserts a notes record. The returned row ID is then appended to the URI and a new URI is
returned to the caller.

At this point, you should be familiar with how an Android application is laid out. You
should be able to navigate your way around Notepad, as well as some of the other samples in
the Android SDK. You should be able to run the samples and play with them. Now let’s look at
the overall lifecycle of an Android application.

Examining the Application Lifecycle
The lifecycle of Android applications differs greatly from the lifecycle of web-based J2EE
applications. J2EE apps are loosely managed by the container they run in. For example, a J2EE
container can remove an application from memory if it sits idle for a predetermined time
period.	But	the	container	generally	won’t	move	applications	in	and	out	of	memory	based	on	
load and/or available resources. In other words, it’s up to the application owners to ensure
that resources are available.

The lifecycle of an Android application, on the other hand, is strictly managed by the sys-
tem, based on the user’s needs, available resources, and so on. A user might want to launch a
web browser, for example, but the system ultimately decides whether to start the application.
Although the system is the ultimate manager, it adheres to some defined and logical guidelines
to determine whether an application can be loaded, paused, or stopped. If the user is currently
working with an activity, the system will give high priority to that application. Conversely, if an
activity is not visible and the system determines that an application must be shut down to free
up resources, it will shut down the lower-priority application.

15967ch02.indd 38 6/5/09 11:18:39 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 2 ■ GettING YOUr Feet Wet 39

■Note Android runs each application in a separate process, each of which hosts its own virtual machine.
This provides a protected-memory environment. Moreover, by isolating applications to an individual process,
the system can control which application deserves higher priority. For example, a background process that’s
doing a CPU-intensive task cannot block an incoming phone call.

The concept of application lifecycle is logical, but a fundamental aspect of Android
applications complicates matters. Specifically, the Android application architecture is compo-
nent- and integration-oriented. This allows a rich user experience, seamless reuse, and easy
application integration, but creates a complex task for the application-lifecycle manager.

Let’s consider a typical scenario. A user is talking to someone on the phone and needs
to open an e-mail message to answer a question. She goes to the home screen, opens the
mail application, opens the e-mail message, clicks a link in the e-mail, and answers her
friend’s question by reading a stock quote from a web page. This scenario would require four
applications: the home application, a talk application, an e-mail application, and a browser
application. As the user navigates from one application to the next, her experience is seamless.
In the background, however, the system is saving and restoring application state. For instance,
when the user clicks the link in the e-mail message, the system saves metadata on the running
e-mail–message activity before starting the browser-application activity to launch a URL. In
fact, the system saves metadata on any activity before starting another, so that it can come
back to the activity (when the user backtracks, for example). If memory becomes an issue, the
system will have to shut down a process running an activity and resume it as necessary.

Android is sensitive to the lifecycle of an application and its components. Therefore, you’ll
need to understand and handle lifecycle events in order to build a stable application. The
processes running your Android application and its components go through various lifecycle
events, and Android provides callbacks that you can implement to handle state changes. For
starters, you’ll want to become familiar with the various lifecycle callbacks for an activity (see
Listing 2-7).

Listing 2-7. Lifecycle Methods of an Activity

 protected void onCreate(Bundle savedInstanceState);
 protected void onStart();

 protected void onRestart();
 protected void onResume();
 protected void onPause();
 protected void onStop();
 protected void onDestroy();

Listing 2-7 shows the list of lifecycle methods that Android calls during the life of an activ-
ity. It’s important to understand when each of the methods is called by the system to ensure
that you implement a stable application. Note that you do not need to react to all of these
methods. If you do, however, be sure to call the superclass versions as well. Figure 2-9 shows
the transitions between states.

15967ch02.indd 39 6/5/09 11:18:39 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 2 ■ GettING YOUr Feet Wet40

onRestart

onStart

onDestroy

onCreate

Activity Start

onResume

Activity Stop

onStop

onPause

Figure 2-9. State transitions of an activity

The system can start and stop your activities based on what else is happening. Android
calls the onCreate() method when the activity is freshly created. onCreate() is always followed
by a call to onStart(), but onStart() is not always preceded by a call to onCreate() because
onStart() can be called if your application was stopped (from onStop()). When onStart() is
called, your activity is not visible to the user, but it’s about to be. onResume() is called after
onStart(), just when the activity is in the foreground and accessible to the user. At this point,
the user is interacting with your activity.

 When the user decides to move to another activity, the system will call your activity’s
onPause() method. From onPause(), you can expect either onResume() or onStop() to be called.
onResume() is called, for example, if the user brings your activity back to the foreground.
onStop() is called if your activity becomes invisible to the user. If your activity is brought back
to the foreground, after a call to onStop(), then onRestart() will be called. If your activity sits
on the activity stack but is not visible to the user, and the system decides to kill your activity,
onDestroy() will be called.

The state model described for an activity appears complex, but you are not required to
deal with every possible scenario. In fact, you will mostly handle onCreate() and onPause().
You will handle onCreate() to create the user interface for your activity. In this method, you
will bind data to your widgets and wire up any event handlers for your UI components. In
onPause(), you will want to persist critical data to your application’s data store. It’s the last safe
method that will get called before the system kills your application. onStop() and onDestroy()
are not guaranteed to be called, so don’t rely on these methods for critical logic.

The takeaway from this discussion? The system manages your application, and it can
start, stop, or resume an application component at any time. Although the system controls
your components, they don’t run in complete isolation with respect to your application.
In other words, if the system starts an activity in your application, you can count on an

15967ch02.indd 40 6/5/09 11:18:39 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 2 ■ GettING YOUr Feet Wet 41

application context in your activity. For example, it’s not uncommon to have global vari-
ables shared among the activities in your application. You can share a global variable by
writing an extension of the android.app.Application class and then initializing the global
variable in the onCreate() method (see Listing 2-8). Activities and other components in your
application can then access these references with confidence when they are executing.

Listing 2-8. An Extension of the Application Class

public class MyApplication extends Application
{
 // global variable
 private static final String myGlobalVariable;

 @Override
 public void onCreate()
 {
 super.onCreate();
 //... initialize global variables here
 myGlobalVariable = loadCacheData();
 }

 public static String getMyGlobalVariable() {
 return myGlobalVariable;
 }

}

In the next section, we’ll give you some armor to help you develop Android applications—
we will discuss debugging.

Debugging Your App
After you write a few lines of code for your first application, you’ll start wondering if it’s pos-
sible to have a debug session while you interact with your application in the emulator. Shortly
after that, you’ll instinctively run to System.out.println(), which will fail because the code is
running	on	the	emulator	and	the	sys-out	statement	is	not	fed	back	to	the	IDE.	But	don’t	worry;	
the Android SDK includes a host of applications that you can use for debugging purposes.

To log messages from your application, you’ll want to use the android.util.Log class. This
class defines the familiar informational, warning, and error methods. You can also get detailed
tracing information by using the android.os.Debug class, which provides a start-tracing method
(Debug.startMethodTracing()) and a stop-tracing method (Debug.stopMethodTracing()). You
can then view the tracer output using the trace-viewer tool included in the Android SDK. The
SDK also includes a file-explorer tool that you can use to view files on the device. These tools
are integrated with the Eclipse IDE (see Figure 2-10).

15967ch02.indd 41 6/5/09 11:18:39 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 2 ■ GettING YOUr Feet Wet42

Figure 2-10. Debugging tools that you can use while building Android applications

You can view the tools by selecting the Debug perspective in Eclipse. You can also launch
each tool by going to Window ➤ Show View ➤ Other ➤ Android.

One of the tools that you’ll use throughout your Android development is LogCat. This tool
displays the log messages that you emit using android.util.Log, exceptions, and so on. We
will introduce the other tools throughout the book.

Summary
In this chapter, we showed you how to set up your development environment for building
Android applications. We discussed some of the basic building blocks of the Android APIs,
and introduced views, activities, intents, content providers, and services. We then analyzed
the Notepad application in terms of the aforementioned building blocks and application
components. Next, we talked about the importance of the Android application lifecycle.
Finally, we briefly mentioned some of the Android SDK’s debugging tools that integrate with
the Eclipse IDE.

And so begins the foundation of your Android development. The next chapter will discuss
content providers, resources, and intents in great detail.

15967ch02.indd 42 6/5/09 11:18:39 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

C h a p t e r 3

Using resources, Content
providers, and Intents

In Chapter 2, you got an overview of an Android application and a quick look at some of its
underlying concepts. Among these, resources, content providers, and intents form the three
primary pillars of Android UI programming. Android depends on resources for look-and-feel
flexibility, content providers for abstracting data into services, and intents for interoperabil-
ity and UI reuse. You must fully understand these three concepts in order to build successful
Android applications, so we’ll discuss them in depth here.

Understanding Resources
Resources are critical to the Android architecture. In this section, you’ll learn what resources
are and how to create them using resource files. You’ll find out that resources are declarative,
and that Android creates resource IDs for convenient use in your Java programs. You’ll also
see how the R.java source file mediates the generation and usage of these resource IDs. Then
you’ll learn how to define resources in XML files, reuse resources in other resource XML defi-
nitions, and reuse resources in Java programs. In addition to these XML-based resources, this
chapter also covers two other types of resources: raw resources and assets.

String Resources
A resource in Android is a file (like a music file) or a value (like the title of a dialog box) that is
bound to an executable application. These files and values are bound to the executable in such
a way that you can change them without recompiling and redeploying the application.

Resources play a part in many, if not all, familiar UI frameworks. Familiar examples of
resources include strings, colors, and bitmaps. Instead of hard-coding strings in an application,
for example, you can use their IDs instead. This indirection lets you change the text of the string
resource without changing the source code.

Let’s start with strings and see how they are used as resources. Android allows you to define
multiple strings in one or more XML resource files. These XML files containing string-resource
definitions reside in the /res/values subdirectory. The names of the XML files are arbitrary,
although you will commonly see the file name as strings.xml. Listing 3-1 shows an example of
a string-resource file.

43

15967ch03.indd 43 6/5/09 11:18:21 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS44

Listing 3-1. Example strings.xml File

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="hello">hello</string>
 <string name="app_name">hello appname</string>
</resources>

When this file is created or updated, the Eclipse ADT plug-in will automatically update a
Java class in your application’s root package called R.java with unique IDs for the two string
resources specified.

■Note Regardless of the number of resource files, there is only one R.java file. In releases 1.5 and up the
file R.java is generated in a separate subdirectory at the same level as the Java source-code root for your
application. This generated separate subdirectory is called "gen." Under this subdirectory the package name in
R.java continues to be the same as in previous releases, which is the root package name for your application.

For the string-resource file in Listing 3-1, the updated R.java file would have these entries:

public final class R {
 ...other entries depending on your project and application

 public static final class string
 {
 ...other entries depending on your project and application

 public static final int hello=0x7f040000;
 public static final int app_name=0x7f040001;

 ...other entries depending on your project and application
 }
 ...other entries depending on your project and application
}

Let’s focus on the static definition for static final class string. R.java creates this
inner static class as a namespace to hold string-resource IDs. The two static final ints
defined with variable names hello and app_name are the resource IDs that represent the cor-
responding string resources. You could use these resource IDs anywhere in the source code
through the following code structure:

R.string.hello

Note that these generated IDs point to ints rather than strings. Most methods that take
strings also take these resource identifiers as inputs. Android will resolve those ints to strings
where needed.

It is merely a convention that most sample applications define all strings in one strings.
xml file. Android takes any number of arbitrary files as long as the structure of the XML file
looks like Listing 3-1 and the file resides in the /res/values subdirectory.

15967ch03.indd 44 6/5/09 11:18:21 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS 45

The structure of this file is easy to follow. You have the root node of <resources> followed
by one or more of its child elements of <string>. Each <string> element or node has a property
called name that will end up as the id attribute in R.java and the actual text for that string ID.

To see that multiple string-resource files are allowed in this subdirectory, you can place
another file with the following content in the same subdirectory and call it strings1.xml:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="hello1">hello 1</string>
 <string name="app_name1">hello appname 1</string>
</resources>

The Eclipse ADT plug-in will validate the uniqueness of these IDs at compile time and
place them in R.java as two additional constants: R.string.hello1 and R.string.app_name1.

Layout Resources
A layout resource is another key resource commonly used in Android programming. In
Android, the view for a screen is often loaded from an XML file as a resource. These XML files
are called layout resources. Consider this code segment for a sample Android activity:

public class HelloWorldActivity extends Activity
{
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 TextView tv = (TextView)this.findViewById(R.id.text1);
 tv.setText("Try this text instead");
 }
 ………
}

The line setContentView(R.layout.main) points out that there is a static class called
R.layout, and within that class there is a constant called main (an integer) pointing to a View
defined by an XML layout-resource file. The name of the XML file would be main.xml, which
needs to be placed in the resources’ layout subdirectory. In other words, this statement would
expect the programmer to create the file /res/layout/main.xml and place the necessary layout
definition in that file. The contents of the main.xml layout file could look like Listing 3-2.

Listing 3-2. Example main.xml Layout File

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >

15967ch03.indd 45 6/5/09 11:18:21 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS46

<TextView android:id="@+id/text1"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/hello"
 />
 <Button android:id="@+id/b1"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@+string/hello"
 />
</LinearLayout>

The layout file in Listing 3-2 defines a root node called LinearLayout, which contains a
TextView followed by a Button. A LinearLayout lays out its children vertically or horizontally—
vertically, in this example.

You will need to define a separate layout file for each screen. More accurately, each layout
needs a dedicated file. If you are painting two screens, you will likely need two layout files such
as /res/layout/screen1_layout.xml and /res/layout/screen2_layout.xml.

■Note Each file in the /res/layout/ subdirectory generates a unique constant based on the name of the
file (extension excluded). With layouts, what matters is the number of files; with string resources, what mat-
ters is the number of individual string resources inside the files.

For example, if you have two files under /res/layout/ called file1.xml and file2.xml,
you’ll have the following entries in R.java:

 public static final class layout {
 any other files
 public static final int file1=0x7f030000;
 public static final int file2=0x7f030001;
 }

The views defined in these layout files are accessible in code if you reference their IDs
from R.java:

TextView tv = (TextView)this.findViewById(R.id.text1);
tv.setText("Try this text instead");

In this example, you locate the TextView by using the findViewById method of the Activity
class. The constant R.id.text1 corresponds to the ID defined for the TextView. The id for the
TextView in the layout file is as follows:

<TextView android:id="@+id/text1"
..
</TextView>

15967ch03.indd 46 6/5/09 11:18:22 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS 47

The attribute value for the id attribute indicates that a constant called text1 will be used
to uniquely identify this view among other views hosted by that activity. The plus sign (+) in
@+id/text1 means that text1 will be created if it doesn’t exist already. There is more to this
syntax, in which ids are assigned to resources. We’ll talk about that next.

Resource-Reference Syntax
Irrespective of the type of resource, all Android resources are identified (or referenced) by
their id in Java source code. The syntax you use to allocate an id to a resource in the XML file
is called resource-reference syntax. The id attribute syntax in the previous example @+id/text1
has the following formal structure:

@[package:]type/name

The type corresponds to one of the resource-type namespaces available in R.java, such as
the following:

	 •	 R.drawable

	 •	 R.id

	 •	 R.layout

	 •	 R.string

	 •	 R.attr

The corresponding types in XML resource-reference syntax are as follows:

	 •	 drawable

	 •	 id

	 •	 layout

	 •	 string

	 •	 attr

The name part in the resource reference @[package:]type/name is the name given to the
resource; it also gets represented as an int constant in R.java. Now we have come to the
important part of this syntax: the package. If you don’t specify any package, then the pair type/
name will be resolved based on local resources and the application’s local R.java package.

If you specify android:type/name, on the other hand, the reference will look in the package
identified by android: the android.R.java file, to be precise. So you can use any Java package
name in place of the package placeholder to locate the right R.java file to resolve the reference.
Based on this information, let’s analyze a few examples:

<TextView id="text">
// Compile error, as id will not take raw text strings

<TextView id="@text">
// wrong syntax. It is missing a type name
// you will get an error "No Resource type specified

15967ch03.indd 47 6/5/09 11:18:22 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS48

<TextView id="@id/text">
//Error: No Resource found that matches id "text"
//Unless you have taken care to define "text" before

<TextView id="@android:id/text">
// Error: Resource is not public
// indicating that there is no such id in android.R.id
// Of course this would be valid if Android R.java were to define
// an id with this name

<TextView id="@+id/text">
//Success: Creates an id called "text" in the local package

Defining Your Own Resource IDs for Later Use
The general pattern for allocating an id is either to create a new one or to use the one created
by the Android package. However, it is possible to create ids beforehand and use them later in
your own packages.

The line <TextView id="@+id/text"> in the preceding code segment indicates that an id
named text is going to be used if one already exists. If the id doesn’t exist, then a new one
is going to be created. So when might an id such as text already exist in R.java for it to be
reused?

You might be inclined to put a constant like R.id.text in R.java, but R.java is not edit-
able. Even if it were, it gets regenerated every time something gets changed, added, or deleted
in the /res/* subdirectory. However, you can use a resource tag called item to define an id
without attaching to any particular resource. Here is an example:

<resources>
<item type="id" name="text"/>
</resources>

The type refers to the type of resource—an id in this case. Once this id is in place, the fol-
lowing View definition would work:

<TextView android:id="@id/text">
..
</TextView>

Compiled and Noncompiled Android Resources
Android supports a number of other resources in addition to string resources and layout
resources. The general process of creating and using these various resources is similar.

15967ch03.indd 48 6/5/09 11:18:22 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS 49

However, it is worthwhile to consider some differences. Android supports all these
resources through XML files, bitmap files for images, and raw files (examples of which could
include audio and video). Within the set of XML files, you’ll find two types: one gets compiled
into binary format, and the other gets copied as is. The examples you have seen so far—the
string-resource XML files and the layout-resource XML files—get compiled into binary format
before becoming part of the installable package. You can also place raw XML files in the /res/
xml/ subdirectory to have them compiled into binary format. But if you place files, including
XML files, in the /res/raw/ directory instead, they don’t get compiled into binary format. You
must use explicit stream-based APIs to read these files.

As we mentioned in Table 2-1 in the previous chapter, resource files are housed in various
subdirectories based on their type. Here are some important subdirectories in the /res folder
and the types of resources they host:

	 •	 anim: Compiled animation files

	 •	 drawable: Bitmaps

	 •	 layout: UI/view definitions

	 •	 values: Arrays, colors, dimensions, strings, and styles

	 •	 xml: Compiled arbitrary raw XML files

	 •	 raw: Noncompiled raw files

The resource compiler in the Android Asset Packaging Tool (AAPT) compiles all the
resources except the raw resources and places them into the final .apk file. This file, which con-
tains the Android application’s code and resources, correlates to Java’s .jar file (“apk” stands
for “Android Package”). The .apk file is what gets installed onto the device. In addition to gath-
ering raw assets into a final compressed file, the AAPT also parses resource definitions into
binary asset data.

■Note Although the XML resource parser allows resource names such as hello-string, you will see a
compile-time error in R.java. You can fix this by renaming your resource to hello_string (replacing the
dash with an underscore).

Enumerating Key Android Resources
Now that we’ve been through the basics of resources, we’ll enumerate some of the other key
resources that Android supports, their XML representations, and the way they’re used in
Java code. (You can use this section as a quick reference as you write resource files for each
resource.) To start with, take a quick glance at the types of resources and what they are used
for (see Table 3-1).

15967ch03.indd 49 6/5/09 11:18:22 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS50

Table 3-1. Types of Resources

Resource Type Location Description

Color /res/values/any-file Represents color identifiers pointing to color
codes. These resource IDs are exposed in R.java as
R.color.*.

String /res/values/any-file Represents string resources. String resources allow
Java-formatted strings and raw HTML in addition
to simple strings. These resource IDs are exposed in
R.java as R.string.*.

Dimension /res/values/any-file Represents dimensions or sizes of various elements
or views in Android. Supports pixels, inches, mil-
limeters, density-independent pixels, and scale-
independent pixels. These resource IDs are exposed
in R.java as R.dimen.*.

Image /res/drawable/multiple-
files

Represents image resources. Supported images
include .jpg, .gif, and .png. Each image is in a
separate file and gets its own ID based on the file
name. These resource IDs are exposed in R.java as
R.drawable.*. The image support also includes an
image type called a stretchable image that allows
portions of an image to stretch while other portions
of that image stay static.

Color
Drawable

/res/values/any-file
also
/res/drawable/multiple-
files

Represents rectangle of colors to be used as view
backgrounds or general drawables like bitmaps.
You can use this instead of specifying a single
colored bitmap as a background. In Java, this is
equivalent to creating a colored rectangle and set-
ting it as a background for a view.
The <drawable> value tag in the values subdirec-
tory supports this. These resource IDs are exposed
in R.java as R.drawable.*.
Android also supports rounded rectangles and
gradient rectangles through XML files placed in
/res/drawable with the root XML tag <shape>.
These resource IDs are also exposed in R.java as
R.drawable.*. Each file name in this case translates
to a unique drawable ID.

Arbitrary
XML Files

/res/xml/*.xml Android allows arbitrary XML files as resources.
These files will be compiled by the AAPT com-
piler. These resource IDs are exposed in R.java as
R.xml.*.

Arbitrary Raw
Resources

/res/raw/*.* Android allows arbitrary noncompiled binary or text
files under this directory. Each file gets a unique
resource ID. These resource IDs are exposed in
R.java as R.raw.*.

Arbitrary Raw
Assets

/assets/*.*/*.* Android allows arbitrary files in arbitrary subdirec-
tories, starting at the /assets subdirectory. These
are not really resources, but raw files. This directo-
ry, unlike the /res subdirectory, allows an arbitrary
depth of subdirectories. These files do not generate
any resource IDs. You have to use a relative path
name starting at and excluding /assets.

15967ch03.indd 50 6/5/09 11:18:22 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS 51

Each of the resources specified in this table are further elaborated in the following sec-
tions with XML and Java code snippets.

Color resources
As you can do with string resources, you can use reference identifiers to indirectly reference
colors. Doing this enables Android to localize colors and apply themes. Once you’ve defined
and identified colors in resource files, you can access them in Java code through their IDs.
Whereas string-resource IDs are available under the <your-package>.R.string namespace, the
color IDs are available under the <your-package>.R.color namespace.

See Listing 3-3 for some examples of specifying color in an XML resource file.

Listing 3-3. XML Syntax for Defining Color Resources

<resources>
 <color name="red">#f00</color>
 <color name="blue">#0000ff</color>
 <color name="green">#f0f0</color>
 <color name="main_back_ground_color">#ffffff00</color>
</resources>

The entries in Listing 3-3 need to be in a file residing in the /res/values subdirectory. The
name of the file is arbitrary, meaning the file name can be anything you choose.

Listing 3-4 shows an example of using a color resource in Java code.

Listing 3-4. Color Resources in Java code

int mainBackGroundColor
 = activity.getResources.getColor(R.color.main_back_ground_color);

Listing 3-5 shows how you would use a color resource in a view definition.

Listing 3-5. Using Colors in View Definitions

<TextView android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:textColor="@color/ red"
 android:text="Sample Text to Show Red Color"/>

More on String resources
We covered string resources briefly when we introduced resources at the beginning of this
chapter. Let us revisit them in order to provide some more detail. We will show you how to
define and use HTML strings, as well as how to substitute variables in string resources.

■Note Unlike other UI frameworks, Android offers the ability to quickly associate IDs with string resources
through R.java. So using strings as resources is that much easier in Android.

15967ch03.indd 51 6/5/09 11:18:22 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS52

Let us start by showing how you can define normal strings, quoted strings, HTML strings,
and substitutable strings in an XML resource file (see Listing 3-6).

Listing 3-6. XML Syntax for Defining String Resources

<resources>
 <string name="simple_string">simple string</string>
 <string name="quoted_string">"quoted'string"</string>
 <string name="double_quoted_string">\"double quotes\"</string>
 <string name="java_format_string">
 hello %2$s java format string. %1$s again
 </string>
 <string name="tagged_string">
 Hello <i>Slanted Android</i>, You are bold.
 </string>
</resources>

This XML string-resource file needs to be in the /res/values subdirectory. The name of
the file is arbitrary.

Notice how quoted strings need to be either escaped or placed in alternate quotes. The
string definitions also allow standard Java string-formatting sequences.

Android also allows child XML elements such as , <i>, and other simple text-formatting
HTML within the <string> node. You can use this compound HTML string to style the text
before painting in a text view.

The Java examples in Listing 3-7 illustrate each usage.

Listing 3-7. Using String Resources in Java Code

//Read a simple string and set it in a text view
String simpleString = activity.getString(R.string.simple_string);
textView.setText(simpleString);

//Read a quoted string and set it in a text view
String quotedString = activity.getString(R.string.quoted_string);
textView.setText(quotedString);

//Read a double quoted string and set it in a text view
String doubleQuotedString = activity.getString(R.string.double_quoted_string);
textView.setText(doubleQuotedString);

//Read a Java format string
String javaFormatString = activity.getString(R.string.java_format_string);
//Convert the formatted string by passing in arguments
String substitutedString = String.format(javaFormatString, "Hello" , "Android");
//set the output in a text view
textView.setText(substitutedString);

15967ch03.indd 52 6/5/09 11:18:22 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS 53

//Read an html string from the resource and set it in a text view
String htmlTaggedString = activity.getString(R.string.tagged_string);
//Convert it to a text span so that it can be set in a text view
//android.text.Html class allows painting of "html" strings
//This is strictly an Android class and does not support all html tags
Spanned textSpan = android.text.Html.fromHtml(htmlTaggedString);
//Set it in a text view
textView.setText(textSpan);

Once you’ve defined the strings as resources, you can set them directly on a view such as
TextView in the XML layout definition for that TextView. Listing 3-8 shows an example where
an HTML string is set as the text content of a TextView.

Listing 3-8. Using String Resources in XML

<TextView android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:textAlign="center"
 android:text="@string/tagged_string"/>

TextView automatically realizes that this string is an HTML string, and honors its format-
ting accordingly. This is nice because you can quickly set attractive text in your views as part of
the layout.

Dimension resources
Pixels, inches, and points are all examples of dimensions that can play a part in XML layouts
or Java code. You can use these dimension resources to style and localize Android UIs without
changing the source code.

Listing 3-9 shows how you can use dimension resources in XML.

Listing 3-9. XML Syntax for Defining Dimension Resources

<resources>
 <dimen name="mysize_in_pixels">1px</dimen>
 <dimen name="mysize_in_dp">5dp</dimen>
 <dimen name="medium_size">100sp</dimen>
</resources>

You could specify the dimensions in any of the following units:

	 •	 px: Pixels

	 •	 in: Inches

	 •	 mm: Millimeters

	 •	 pt: Points

15967ch03.indd 53 6/5/09 11:18:22 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS54

	 •	 dp: Density-independent pixels based on a 160-dpi (pixel density per inch) screen
(dimensions adjust to screen density)

	 •	 sp: Scale-independent pixels (dimensions that allow for user sizing; helpful for use in
fonts)

In Java, you need to access your Resources object instance to retrieve a dimension. You
can do this by calling getResources on an activity object (see Listing 3-10).

Listing 3-10. Using Dimension Resources in Java Code

float dimen = activity.getResources().getDimension(R.dimen.mysize_in_pixels);

■Note The method call uses Dimension whereas the R.java namespace uses the shortened version
dimen to represent “dimension.”

As in Java, the resource reference for a dimension in XML uses dimen as opposed to the full
word “dimension” (see Listing 3-11).

Listing 3-11. Using Dimension Resources in XML

<TextView android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:textSize="@dimen/medium_size"/>

Image resources
Android generates resource IDs for image files placed in the /res/drawable subdirectory. The
supported image types include .gif, .jpg, and .png. Each image file in this directory generates
a unique ID from its base file name. If the image file name is sample_image.jpg, for example,
then the resource ID generated will be R.drawable.sample_image.

■Caution You’ll get an error if you have two file names with the same base file name. Also, files in subdi-
rectories underneath /res/drawable will be ignored.

You can then reference these images in other XML layout definitions, as shown in
Listing 3-12.

15967ch03.indd 54 6/5/09 11:18:22 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS 55

Listing 3-12. Using Image Resources in XML

<Button
 android:id="@+id/button1"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Dial"
 android:background="@drawable/sample_image"
/>

You can also retrieve the image programmatically and set it yourself in Java (see Listing 3-13).

Listing 3-13. Using Image Resources in Java

//Call getDrawable to get the image
BitmapDrawable d = activity.getResources().getDrawable(R.drawable.sample_image);

//You can use the drawable then to set the background
button.setBackgroundDrawable(d);

//or you can set the background directly from the Resource Id
button.setBackgroundResource(R.drawable.icon);

■Note These background methods go all the way back to the View class. As a result, most of the UI con-
trols have this background support.

Android also supports a special type of image called a stretchable image. This is simply a
kind of .png where parts of the image can be specified as static and stretchable. Android pro-
vides a tool called the Draw 9-patch tool to specify these regions. (You can read more about it
at http://developer.android.com/guide/developing/tools/draw9patch.html.)

Once the .png image is made available, you can use it as any other image. It comes in
handy when used as background for buttons where the button has to stretch itself to accom-
modate the text.

Color-Drawable resources
In Android, an image is one type of a drawable resource. Android supports another drawable
resource called a color-drawable resource; it’s essentially a colored rectangle.

■Caution The Android documentation seems to suggest that rounded corners are possible. At least in
releases 1.0, 1.1, and 1.5, that is not the case. The documentation also suggests that the instantiated Java
class is PaintDrawable, but the code returns a ColorDrawable.

15967ch03.indd 55 6/5/09 11:18:22 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS56

To define one of these color rectangles, you define an XML element by the node name of
drawable in any XML file in the /res/values subdirectory. Listing 3-14 shows a couple of color-
drawable resource examples.

Listing 3-14. XML Syntax for Defining Color-Drawable Resources

<resources>
 <drawable name="red_rectangle">#f00</drawable>
 <drawable name="blue_rectangle">#0000ff</drawable>
 <drawable name="green_rectangle">#f0f0</drawable>
</resources>

Listings 3-15 and 3-16 show how you can use a color-drawable resource in Java and XML,
respectively.

Listing 3-15. Using Color-Drawable Resources in Java Code

// Get a drawable
ColorDrawble redDrawable =
(ColorDrawable)
activity.getResources().getDrawable(R.drawable.red_rectnagle);

//Set it as a background to a text view
textView.setBackground(redDrawable);

Listing 3-16. Using Color-Drawable Resources in XML Code

<TextView android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:textAlign="center"
 android:background="@drawable/red_rectangle"/>

To achieve the rounded corners in your drawable, you can use the currently undocu-
mented <shape> tag. However, this tag needs to reside in a file by itself in the /res/drawable
directory. Listing 3-17 shows how you can use the <shape> tag to define a rounded rectangle in
a file called /res/drawable/my_rounded_rectangle.xml.

Listing 3-17. Defining a Rounded Rectangle

<shape xmlns:android="http://schemas.android.com/apk/res/android">
 <solid android:color="#f0600000"/>
 <stroke android:width="3dp" color="#ffff8080"/>
 <corners android:radius="13dp" />
 <padding android:left="10dp" android:top="10dp"
 android:right="10dp" android:bottom="10dp" />
</shape>

15967ch03.indd 56 6/5/09 11:18:22 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS 57

You can then use this drawable resource as a background of the previous text-view
example:

// Get a drawable
GradientDrawable roundedRectangle =
(GradientDrawable)
activity.getResources().getDrawable(R.drawable.red_rectnagle);

//Set it as a background to a text view
textView.setBackground(roundedRectangle);

■Note It is not necessary to cast the returned base Drawable to a GradientDrawable, but it was done to
show you that this <shape> tag becomes a GradientDrawable. This information is important because you
can look up the Java API documentation for this class to know the XML tags it defines.

Working with Arbitrary XML Resource Files
Android also allows arbitrary XML files as resources. This approach offers three distinct advan-
tages. First, it provides a quick way to reference these files based on their generated resource
IDs. Second, the approach allows you to localize these resource XML files. Third, you can com-
pile and store these XML files on the device efficiently.

XML files that need to be read in this fashion are stored under the /res/xml subdirectory.
Here is an example XML file called /res/xml/test.xml:

<rootelem1>
 <subelem1>
 Hello World from an xml sub element
 </subelem1>
</rootelem1>

As it does with other Android XML resource files, the AAPT will compile this XML file
before placing it in the application package. You will need to use an instance of XmlPullParser
if you want to parse these files. You can get an instance of the XmlPullParser implementation
using this code from any context (including activity):

Resources res = activity.getResources();
XmlResourceParser xpp = res.getXml(R.xml.test);

The returned XmlResourceParser is an instance of XmlPullParser, and it also implements
java.util.AttributeSet. Listing 3-18 shows a more complete code snippet that reads the
test.xml file.

15967ch03.indd 57 6/5/09 11:18:22 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS58

Listing 3-18. Using XmlPullParser

private String getEventsFromAnXMLFile(Activity activity)
throws XmlPullParserException, IOException
{
 StringBuffer sb = new StringBuffer();
 Resources res = activity.getResources();
 XmlResourceParser xpp = res.getXml(R.xml.test);

 xpp.next();
 int eventType = xpp.getEventType();
 while (eventType != XmlPullParser.END_DOCUMENT)
 {
 if(eventType == XmlPullParser.START_DOCUMENT)
 {
 sb.append("******Start document");
 }
 else if(eventType == XmlPullParser.START_TAG)
 {
 sb.append("\nStart tag "+xpp.getName());
 }
 else if(eventType == XmlPullParser.END_TAG)
 {
 sb.append("\nEnd tag "+xpp.getName());
 }
 else if(eventType == XmlPullParser.TEXT)
 {
 sb.append("\nText "+xpp.getText());
 }
 eventType = xpp.next();
 }//eof-while
 sb.append("\n******End document");
 return sb.toString();
}//eof-function

In Listing 3-18, you can see how to get XmlPullParser, how to use XmlPullParser to navigate
the XML elements in the XML document, and how to use additional methods of XmlPullParser to
access the details of the XML elements. If you want to run this code, you must create an XML file as
shown earlier and call the getEventsFromAnXMLFile function from any menu item or button click. It
will return a string, which you can print out to the log stream using the Log.d debug method.

Working with Raw Resources
Android also allows raw files in addition to raw XML files. These raw resources, placed in /res/
raw, are arbitrary file resources such as audio, video, or text files that require localization or ref-
erences through resource IDs. Unlike the raw XML files placed in /res/xml, these files are not
compiled but moved to the application package as is. However, each file will have an identifier
generated in R.java. If you were to place a text file at /res/raw/test.txt, you would be able to
read that file using the code in Listing 3-19.

15967ch03.indd 58 6/5/09 11:18:22 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS 59

Listing 3-19. Reading a Raw Resource

String getStringFromRawFile(Activity activity)
{
 Resources r = activity.getResources();
 InputStream is = r.openRawResource(R.raw.test);
 String myText = convertStreamToString(is);
 is.close();
 return myText;
}

String convertStreamToString(InputStream is)
{
 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 int i = is.read();
 while (i != -1)
 {
 baos.write(i);
 i = baos.read();
 }
 return baos.toString();
}

■Caution File names with duplicate base names generate a build error in the Eclipse ADT plug-in. This is
the case for all resource IDs generated for resources that are based on files.

Working with Assets
Android offers one more directory where you can keep files to be included in the package:
/assets. It’s at the same level as /res, meaning it’s not part of the /res subdirectories. The
files in /assets do not generate IDs in R.java; you must specify the file path to read them.
The file path is a relative path starting at /assets. You will use the AssetManager class to
access these files:

//Note: Exceptions are not shown in the code
String getStringFromAssetFile(Activity activity)
{
 AssetManager am = activity.getAssets();
 InputStream is = am.open("test.txt");
 String s = convertStreamToString(is);
 is.close();
 return s;
}

15967ch03.indd 59 6/5/09 11:18:22 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS60

Reviewing the Resources Directory Structure
In summary, here is a quick look at the overall resources directory structure:

/res/values/strings.xml
 /colors.xml
 /dimens.xml
 /attrs.xml
 /styles.xml
 /drawable/*.png
 /*.jpg
 /*.gif
 /*.9.png
 /anim/*.xml
 /layout/*.xml
 /raw/*.*
 /xml/*.xml
/assets/*.*/*.*

■Note Only the /assets directory, because it’s not under the /res directory, can contain an arbitrary list
of subdirectories. Every other directory can have files only at the level of that directory and no deeper. This is
how R.java generates identifiers for those files.

Let us conclude this section on resources by quickly enumerating what you have learned
about resources so far. You know the types of resources supported in Android and you know
how to create these resources in XML files. You know how resource IDs are generated and how
to use them in Java code. You also learned that resource ID generation is a convenient scheme
that simplifies resource usage in Android. Finally, you learned how to work with raw resources
and assets. With that, we will now turn our attention to the section on content providers,
where you will learn to work with data on Android.

Understanding Content Providers
Android allows you to expose your data sources (or data providers) through a representa-
tional state transfer–like (REST-like) abstraction called a content provider. A SQLite database
on an Android device is an example of a data source that you can encapsulate into a content
provider. To retrieve data from a content provider or save data into a content provider, you
will need to use a set of REST-like URIs. For example, if you were to retrieve a set of books
from a content provider that is an encapsulation of a book database, you will need to use a
URI like this:

content://com.android.book.BookProvider/books

15967ch03.indd 60 6/5/09 11:18:22 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS 61

To retrieve a specific book from the book database (book 23), you will need to use a URI
like this:

content://com.android.book.BookProvider/books/23

You will see in this section how these URIs translate to underlying database-access
mechanisms. Any application on the device can make use of these URIs to access and manipu-
late data. As a consequence, content providers play a significant role in sharing data between
applications.

Strictly speaking, though, the content providers’ responsibilities comprise more of an
encapsulation mechanism than a data-access mechanism. You’ll need an actual data-access
mechanism such as SQLite or network access to get to the underlying data sources. So,
content-provider abstraction is required only if you want to share data externally or between
applications. For internal data access, an application can use any data storage/access mecha-
nism that it deems suitable, such as the following:

	 •	 Preferences: A set of key/value pairs that you can persist to store application
preferences

	 •	 Files: Files internal to applications, which you can store on a removable storage
medium

	 •	 SQLite: SQLite databases, each of which is private to the package that creates that
database

	 •	 Network: A mechanism that lets you retrieve or store data externally through the
Internet

■Note Despite the number of data-access mechanisms allowed in Android, this chapter focuses on SQLite
and the content-provider abstraction because content providers form the basis of data sharing, which is
much more common in the Android framework compared to other UI frameworks. We’ll cover the network
approach in Chapter 8 and the preferences mechanism in Chapter 11.

As we go through this section, we will show you the content providers that come with
Android and how to explore them. We will discuss in detail the structure of content URIs and
how these URIs are linked with MIME types. After covering these content-provider concepts
in detail, we will show you how to build a content provider from scratch that encapsulates a
simple book database.

Exploring Android’s Built-in Providers
Android comes with a number of built-in content providers, which are documented in the
SDK’s android.provider Java package. You can view the list of these providers here:

http://developer.android.com/reference/android/provider/package-summary.html

15967ch03.indd 61 6/5/09 11:18:22 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS62

Here are a few of the providers listed on that documentation page:

Browser
CallLog
Contacts
 People
 Phones
 Photos
 Groups
MediaStore
 Audio
 Albums
 Artists
 Genres
 Playlists
 Images
 Thumbnails
 Video
Settings

■Note Android has added a new provider called "Dictionary" in SDK 1.5.

The top-level items are databases and the lower-level items are tables. So Browser,
CallLog, Contacts, MediaStore, and Settings are individual SQLite databases encapsulated
as providers. These SQLite databases typically have an extension of .db and are accessible
only from the implementation package. Any access outside that package must go through the
content-provider interface.

exploring Databases on the emulator and available Devices
Because many content providers in Android use SQLite databases (http://www.sqlite.org/),
you can use tools provided both by Android and by SQLite to examine the databases. Many of
these tools reside in the \android-sdk-install-directory\tools subdirectory.

One of the tools is a remote shell on the device that allows you to execute a command-line
SQLite tool against a specified database. You’ll see in this section how to use this command-
line utility to examine the built-in Android databases.

Android uses another command-line tool called Android Debug Bridge (adb), which is
available as

tools\adb.exe

adb is a special tool in the Android toolkit that most other tools go through to get to the
device. However, you must have an emulator running or an Android device connected for adb
to work. You can find out whether you have running devices or emulators by typing this at the
command line:

15967ch03.indd 62 6/5/09 11:18:22 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS 63

adb devices

If the emulator is not running, you can start the emulator by typing this at the command
line:

\tools\emulator.exe

■Note You should specify the Android Virtual Device (AVD) name to the emulator in SDK 1.5. See Chapter 12
for information on creating and naming virtual devices. Once you have the name of a virtual device, you can
invoke the emulator as follows in SDK 1.5:

\tools\emulator.exe your-avd-name

You can also start the emulator through the Eclipse ADT plug-in. This automatically hap-
pens when you choose a program to run or debug in the emulator. Once the emulator is up
and running, you can test again for a list of running devices by typing this:

\tools\adb.exe devices

Now you should see a printout that looks like this:

List of devices attached
emulator-5554 device

You can see the many options and commands that you can run with adb by typing this at
the command line:

adb help

You can also visit the following URL for many of the runtime options for adb:

http://developer.android.com/guide/developing/tools/adb.html

You can use adb to open a shell on the connected device by typing this:

\tools\adb.exe shell

■Note This shell is essentially a Unix ash, albeit with a limited command set. You can do ls, for example,
but find, grep, and awk are not available in the shell.

You can see the available command set in the shell by typing this at the shell prompt:

#ls /system/bin

15967ch03.indd 63 6/5/09 11:18:22 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS64

dumpcrash
am
dumpstate
input
itr
monkey
pm
svc
ssltest
debuggerd
dhcpcd
hostapd_cli
fillup
linker
logwrapper
telnetd
iftop
mkdosfs
mount
mv
notify
netstat
printenv
reboot
ps
renice
rm
rmdir
rmmod
sendevent
schedtop
ping
sh
hciattach
sdptool
logcat
servicemanager
dbus-daemon
debug_tool
flash_image
installd
dvz
hostapd
htclogkernel
mountd
qemud
radiooptions

toolbox
hcid
route
setprop
sleep
setconsole
smd
stop
top
start
umount
vmstat
wipe
watchprops
sync
netcfg
chmod
date
dd
cmp
cat
dmesg
df
getevent
getprop
hd
id
ifconfig
insmod
ioctl
kill
ln
log
lsmod
ls
mkdir
dumpsys
service
playmp3
sdutil
rild
dalvikvm
dexopt
surfaceflinger
app_process
mediaserver
system_server

The # sign is the prompt for the shell. For brevity, we will omit this prompt in some of the
following examples. In release 1.0 and 1.1, the preceding line brings up the commands:

15967ch03.indd 64 6/5/09 11:18:23 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS 65

■Note The commands here are from the 1.1 release. For the 1.5 release this list may vary slightly.

To see a list of root-level directories and files, you can type the following in the shell:

ls -l

You’ll need to access this directory to see the list of databases:

ls /data/data

This directory contains the list of packages on the device. Let’s look at an example by
exploring the com.android.providers.contacts package:

ls /data/data/com.android.providers.contacts/databases

This will list a database file called contacts.db, which is a SQLite database. If there were
a find command in the included ash, you could look at all the *.db files. But there is no good
way to do this with ls alone. The nearest thing you can do is this:

ls -R /data/data/*/databases

In releases 1.0 and 1.1 of the emulator, you will notice that the Android distribution has
the following databases:

alarms.db
contacts.db
downloads.db
internal.db
settings.db
mmssms.db
telephony.db

■Note You will see two additional databases in release 1.5: user_dict.db and launcher.db.

Unlike traditional databases on servers and desktops, SQLite databases on the device
are created as needed. You might not see some database files unless you have accessed the
database at least once, thereby instigating its creation. You can invoke sqlite3 on one of these
databases inside the adb shell by typing this:

#sqlite3 /data/data/com.android.providers.contacts/databases/contacts.db

You can exit sqlite3 by typing this:

sqlite>.exit

15967ch03.indd 65 6/5/09 11:18:23 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS66

Notice that the prompt for adb is # and the prompt for sqlite3 is sqlite>. You can read
about the various sqlite3 commands by visiting http://www.sqlite.org/sqlite.html. How-
ever, we will list a few important commands here so that you don’t have to make a trip to the
web. You can see a list of tables by typing

sqlite> .tables

This command is a shortcut for

SELECT name FROM sqlite_master
WHERE type IN ('table','view') AND name NOT LIKE 'sqlite_%'
UNION ALL
SELECT name FROM sqlite_temp_master
WHERE type IN ('table','view')
ORDER BY 1

As you probably guessed, the table sqlite_master is a master table that keeps track of
tables and views in the database. The following command line prints out a create statement
for a table called people in contacts.db:

.schema people

This is one way to get at the column names of a table in SQLite. This will also print out the
column data types. While working with content providers, you should note these column types
because access methods depend on them.

However, it is pretty tedious to humanly parse through this long create statement just to
learn the column names and their types. Luckily, there is a workaround: you can pull contacts.
db down to your local box and then examine the database using any number of GUI tools for
SQLite version 3. You can issue the following command from your OS command prompt to
pull down the contacts.db file:

adb pull /data/data/com.android.providers.contacts/databases/contacts.db ➥

c:/somelocaldir/contacts.db

We used a free download of Sqliteman (http://sqliteman.com/), a GUI tool for SQLite
databases, which seemed to work fine. We experienced a few crashes but otherwise found the
tool completely usable for exploring Android SQLite databases.

Quick SQLite primer
The following sample SQL statements could help you navigate through the SQLite databases
quickly:

//Set the column headers to show in the tool
sqlite>.headers on

//select all rows from a table
select * from table1;

//count the number of rows in a table
select count(*) from table1;

15967ch03.indd 66 6/5/09 11:18:23 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS 67

//select a specific set of columns
select col1, col2 from table1;

//Select distinct values in a column
select distinct col1 from table1;

//counting the distinct values
select count(col1) from (select distinct col1 from table1);

//group by
select count(*), col1 from table1 group by col1;

//regular inner join
select * from table1 t1, table2 t2
where t1.col1 = t2.col1;

//left outer join
//Give me everything in t1 even though there are no rows in t2
select * from table t1 left outer join table2 t2
on t1.col1 = t2.col1
where

Architecture of Content Providers
You now know what content providers are and how to explore existing content providers
through Android and SQLite tools. Next, we’ll examine some of the architectural elements of
content providers and how these content providers relate to other data-access facilities in the
industry.

Content providers expose their data to their clients through a URI, similar to the way a
web site exposes its content through URLs. Overall, the content-provider approach has paral-
lels to the following:

	 •	 Web	sites

	 •	 REST

	 •	 Web	services

	 •	 Stored	procedures

Each content provider on a device registers itself like a web site with a string (akin
to a domain name) and a set of URIs. Here are two examples of providers registered in
AndroidManifest.xml:

<provider android:name="SomeProvider"
 android:authorities="com.your-company.SomeProvider" />

<provider android:name="NotePadProvider"
 android:authorities="com.google.provider.NotePad"
/>

15967ch03.indd 67 6/5/09 11:18:23 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS68

An authority is like a domain name for that content provider. Given the preceding author-
ity registration, these providers will honor URLs starting with that authority prefix:

content://com.your-company.SomeProvider/
content://com.google.provider.NotePad/

Content providers also provide REST-like URLs to retrieve or manipulate data.
For the preceding registration, the URI to identify a directory or a collection of notes in
the NotePadProvider database is

content://com.google.provider.NotePad/Notes

The URL to identify a specific note is

content://com.google.provider.NotePad/Notes/#

where # is the id of a particular note. Here are some additional examples of URIs that some
data providers accept:

content://media/internal/images
content://media/external/images
content://contacts/people/
content://contacts/people/23

Content providers exhibit characteristics of web services as well. A content provider,
through its URIs, exposes internal data as a service. But the output from the URL of a content
provider is not typed data, as is the case for a SOAP-based web-service call. Nor do the con-
tent provider’s URIs define the structure of the data that they return. But as you will see in
this chapter’s “Structure of Android MIME Types” section, a content provider has a built-in
mechanism to determine the Multipurpose Internet Mail Extensions (MIME) type of the data
represented by this URI. In short, the content provider has an ability to receive inputs via the
URI and return outputs as a set of columns and rows, but it does not have a Web Service Defi-
nition Language (WSDL). The caller is expected to know the structure of the rows and columns
that are returned.

In addition to resembling web sites, REST, and web services, a content provider’s URIs
also resemble the names of stored procedures in a database. Stored procedures present
service-based access to the underlying relational data. URIs are similar to stored procedures
because URI calls against a content provider return a cursor. However, content providers dif-
fer from stored procedures in that the input to a service call in a content provider is typically
embedded in the URI itself.

We’ve provided these comparisons to give you an idea of the broader scope of content
providers and their limitations.

Structure of android Content UrIs
We compared a content provider to a web site because it responds to incoming URIs. So, to
retrieve data from a content provider, all you have to do is invoke a URI. The retrieved data
in the case of a content provider, however, is in the form of a set of rows and columns repre-
sented by an Android cursor object. In this context, we’ll examine the structure of the URIs
that you could use to retrieve data.

15967ch03.indd 68 6/5/09 11:18:23 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS 69

Content URIs in Android look similar to HTTP URIs, except that they start with content
and have this general form:

content://*/*/*

Here’s an example URI that identifies a note numbered 23 in a database of notes:

content://com.google.provider.NotePad/notes/23

After content:, the URI contains a unique identifier for the authority, which is used to
locate the provider in the provider registry. In the preceding example, com.google.provider.
NotePad is the authority portion of the URI.

/notes/23 is the path section of the URI that is specific to each provider. The notes and 23
portions of the path section are called path segments. It is the responsibility of the provider to
document and interpret the path section and path segments of the URIs. The developer of the
content provider usually does this by declaring constants in a Java class or a Java interface in
that provider’s implementation Java package. Furthermore, the first portion of the path might
point to a collection of objects. For example, /notes indicates a collection or a directory of
notes, whereas /23 points to a specific note item.

Given this URI, a provider is expected to retrieve rows that the URI identifies. The provider
is also expected to alter content at this URI using any of the state-change methods: insert,
update, or delete.

Structure of android MIMe types
Just as a web site returns a MIME type for a given URL, a content provider has an added
responsibility to return the MIME type for a given URI. MIME types work in Android similar to
how they work in HTTP. You ask a provider for the MIME type of a given URI that it supports,
and the provider returns a two-part string identifying its MIME type according to the standard
web MIME conventions. You can find the MIME-type standard here:

http://tools.ietf.org/html/rfc2046

According to the MIME-type specification, a MIME type has two parts: a type and a sub-
type. Here are some examples of well-known MIME-type pairs:

text/html
text/css
text/xml
text/vnd.curl
application/pdf
application/rtf
application/vnd.ms-excel

You can see a complete list of registered types and subtypes at the Internet Assigned
Numbers Authority (IANA) web site:

http://www.iana.org/assignments/media-types/

15967ch03.indd 69 6/5/09 11:18:23 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS70

The primary registered content types are

application
audio
example
image
message
model
multipart
text
video

Each of these primary types has subtypes. But if a vendor has proprietary data formats,
the subtype name begins with vnd. For example, Microsoft Excel spreadsheets are identified by
the subtype vnd.ms-excel, whereas pdf is considered a nonvendor standard and is represented
as such without any vendor-specific prefix.

Some subtypes start with x-; these are nonstandard subtypes that don’t have to be regis-
tered. They’re considered private values that are bilaterally defined between two collaborating
agents. Here are a few examples:

application/x-tar
audio/x-aiff
video/x-msvideo

Android follows a similar convention to define MIME types. The vnd in Android MIME
types indicates that these types and subtypes are nonstandard, vendor-specific forms. To
provide uniqueness, Android further demarcates the types and subtypes with multiple parts
similar to a domain spec. Furthermore, the Android MIME type for each content type has two
forms: one for a specific record, and one for multiple records.

For a single record, the MIME type looks like this:

vnd.android.cursor.item/vnd.yourcompanyname.contenttype

For a collection of records or rows, the MIME type looks like this:

vnd.android.cursor.dir/vnd.yourcompanyname.contenttype

Here are a couple examples:

//One single note
vnd.android.cursor.item/vnd.google.note

//A collection or a directory of notes
vnd.android.cursor.dir/vnd.google.note

MIME types are extensively used in Android, especially in intents, where the system fig-
ures out what activity to invoke based on the MIME type of data. MIME types are invariably
derived from their URIs through content providers. You need to keep three things in mind
when you work with MIME types:

15967ch03.indd 70 6/5/09 11:18:23 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS 71

	 •	 The	type	and	subtype	need	to	be	unique	for	what	they	represent.

	 •	 As	mentioned	earlier,	they	need	to	be	preceded	with	vnd if they are not standard (which
is usually the case when you talk about specific records).

	 •	 They	are	typically	namespaced	for	your	specific	need.

You should also note that the primary MIME type for a collection of items returned
through an Android cursor should always be vnd.android.cursor.dir, and the primary MIME
type of a single item retrieved through an Android cursor should be vnd.android.cursor.item.
You have more wiggle room when it comes to the subtype, as in vnd.google.note; after the
vnd. part, you are free to subtype it with anything you’d like.

reading Data Using UrIs
Now you know how to retrieve data from a content provider using URIs. Just as a web site
can allow a number of different URLs based at a certain root URL, a content provider can also
allow a number of URIs. Because the URIs defined by a content provider are unique to that
provider, it is important that these URIs are documented and available for clients to see and
then call. The providers that come with Android make this easier by defining constants repre-
senting these URI strings.

Consider these three URIs defined by helper classes in the Android SDK:

MediaStore.Images.Media.INTERNAL_CONTENT_URI
MediaStore.Images.Media.EXTERNAL_CONTENT_URI
Contacts.People.CONTENT_URI

The equivalent textual URI strings would be as follows:

content://media/internal/images
content://media/external/images
content://contacts/people/

The MediaStore provider defines two URIs and the Contacts provider defines one URI.
Given these URIs, the code to retrieve a single row of contacts looks like this:

Uri peopleBaseUri = Contacts.People.CONTENT_URI;
Uri myPersonUri = peopleBaseUri.withAppendedId(Contacts.People.CONTENT_URI, 23);

//Query for this record.
//managedQuery is a method on Activity class
Cursor cur = managedQuery(myPersonUri, null, null, null);

Notice how the Contacts.People.CONTENT_URI is predefined as a constant in the People
class. In this example, the code takes the root URI, adds a specific person ID to it, and makes a
call to the managedQuery method.

As part of the managed query against this URI, it is possible to specify a sort order, the col-
umns to select, and a where clause. These additional parameters are set to null in this example.

A content provider should list which columns it supports by implementing a set of inter-
faces or by listing the column names as constants. However, the class or interface that defines
constants for columns should also make the column types clear.

15967ch03.indd 71 6/5/09 11:18:23 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS72

Listing 3-20 shows how to retrieve a cursor with a specific list of columns from the People
provider, based on the previous example.

Listing 3-20. Retrieving a Cursor from a Content Provider

// An array specifying which columns to return.
string[] projection = new string[] {
 People._ID,
 People.NAME,
 People.NUMBER,
};

// Get the base URI for People table in Contacts Content Provider.
// ie. content://contacts/people/
Uri mContactsUri = People.CONTENT_URI;

// Best way to retrieve a query; returns a managed query.
Cursor managedCursor = managedQuery(mContactsUri,
 projection, //Which columns to return.
 null, // WHERE clause
 People.NAME + " ASC"); // Order-by clause.

Notice how a projection is merely an array of strings representing column names. So
unless you know what these columns are, you’ll find it difficult to create a projection. You
should look for these column names in the same class that provides the URI, in this case the
People class. Let’s look at the other column names defined in this class:

CUSTOM_RINGTONE
DISPLAY_NAME
LAST_TIME_CONTACTED
NAME
NOTES
PHOTO_VERSION
SEND_TO_VOICE_MAIL
STARRED
TIMES_CONTACTED

You can discover more about each of these columns by looking at the SDK documentation
for the android.provider.Contacts.PeopleColumns class, available at this URL:

http://code.google.com/android/reference/android/provider/➥

Contacts.PeopleColumns.html

It is also important to note that a database like contacts contains several tables, each of
which is represented by a class or an interface to describe its columns and their types. Let’s
take a look at the package android.providers.Contacts, documented at the following URL:

http://code.google.com/android/reference/android/provider/Contacts.html

15967ch03.indd 72 6/5/09 11:18:23 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS 73

You will see that this package has the following nested classes or interfaces:

ContactMethods
Extensions
Groups
Organizations
People
Phones
Photos
Settings

Each of these classes represents a table name in the contacts.db database, and each table
is responsible for describing its own URI structure. Plus, a corresponding Columns interface is
defined for each class to identify the column names, such as PeopleColumns.

Let’s revisit the cursor that is returned: it contains zero or more records. Column names,
order, and type are provider-specific. However, every row returned has a default column
called _id representing a unique ID for that row.

Using the Cursor
Before you access a cursor, you should know a few things about an Android cursor:

	 •	 A	cursor	is	a	collection	of	rows.	

	 •	 You	need	to	use	moveToFirst() because the cursor is positioned before the first row.

	 •	 You	need	to	know	the	column	names.	

	 •	 You	need	to	know	the	column	types.	

	 •	 All	field-access	methods	are	based	on	column	number,	so	you	must	convert	the	col-
umn name to a column number first.

	 •	 The	cursor	is	a	random	cursor	(you	can	move	forward	and	backward,	and	you	can	
jump).

	 •	 Because	the	cursor	is	a	random	cursor,	you	can	ask	it	for	a	row	count.	

An Android cursor has a number of methods that allow you to navigate through it.
Listing 3-21 shows you how to check if a cursor is empty, and how to walk through the cursor
row by row when it is not empty.

Listing 3-21. Navigating Through a Cursor Using a while Loop

if (cur.moveToFirst() == false)
{
 //no rows empty cursor
 return;
}

//The cursor is already pointing to the first row
//let's access a few columns
int nameColumnIndex = cur.getColumnIndex(People.NAME);
String name = cur.getString(nameColumnIndex);

15967ch03.indd 73 6/5/09 11:18:23 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS74

//let's now see how we can loop through a cursor

while(cur.moveToNext())
{
 //cursor moved successfully
 //access fields
}

The assumption at the beginning of Listing 3-21 is that the cursor has been positioned
before the first row. To position the cursor on the first row, we use the moveToFirst() method
on the cursor object. This method returns false if the cursor is empty. We then use the
moveToNext() method repetitively to walk through the cursor.

To help you learn where the cursor is, Android provides the following methods:

isBeforeFirst()
isAfterLast()
isClosed()

Using these methods, you can also use a for loop as in Listing 3-22 to navigate through
the cursor instead of the while loop used in Listing 3-21.

Listing 3-22. Navigating Through a Cursor Using a for Loop

for(cur.moveToFirst();!cur.isAfterLast();cur.moveToNext())
{
 int nameColumn = cur.getColumnIndex(People.NAME);
 int phoneColumn = cur.getColumnIndex(People.NUMBER);

 String name = cur.getString(nameColumn);
 String phoneNumber = cur.getString(phoneColumn);
}

To find the number of rows in a cursor, Android provides a method on the cursor object
called getCount().

Working with the where Clause
Content providers offer two ways of passing a where clause:

	 •	 Through	the	URI

	 •	 Through	the	combination	of	a	string clause and a set of replaceable string-array
arguments

We will cover both of these approaches through some sample code.

Passing a where Clause Through a URI

Imagine you want to retrieve a note whose ID is 23 from the Google notes database. You’d use
the code in Listing 3-23 to retrieve a cursor containing one row corresponding to row 23 in the
notes table.

15967ch03.indd 74 6/5/09 11:18:23 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS 75

Listing 3-23. Passing SQL WHERE Clauses Through the URI

Activity someActivity;
//..initialize someActivity
String noteUri = "content://com.google.provider.NotePad/notes/23";
Cursor managedCursor = someActivity.managedQuery(noteUri,
 projection, //Which columns to return.
 null, // WHERE clause
 null); // Order-by clause.

We left the where clause argument of the managedQuery method null because in this case,
we assumed that the note provider is smart enough to figure out the id of the book we wanted.
This id is embedded in the URI itself. In a sense, we used the URI as a vehicle to pass the where
clause. This becomes apparent when you notice how the notes provider implements the cor-
responding query method. Here is a code snippet from that query method:

//Retrieve a note id from the incoming uri that looks like
//content://.../notes/23
int noteId = uri.getPathSegments().get(1);

//ask a query builder to build a query
//specify a table name
queryBuilder.setTables(NOTES_TABLE_NAME);

//use the noteid to put a where clause
queryBuilder.appendWhere(Notes._ID + "=" +);

Notice how the id of a note is extracted from the URI. The Uri class representing the incom-
ing argument uri has a method to extract the portions of a URI after the root content://com.
google.provider.NotePad. These portions are called path segments; they’re strings between /
separators such as /seg1/seg3/seg4/ and they’re indexed by their positions. For the URI here,
the first path segment would be 23. We then used this ID of 23 to append to the where clause
specified to the QueryBuilder class. In the end, the equivalent select statement would be

select * from notes where _id == 23

■Note The classes Uri and UriMatcher are used to identify URIs and extract parameters from
them. (We’ll cover UriMatcher further in the section “Using UriMatcher to Figure Out the URIs.”)
SQLiteQueryBuilder is a helper class in android.database.sqlite that allows you to construct
SQL queries to be executed by SQLiteDatabase on a SQLite database instance.

Using Explicit WHERE Clauses

Now that you have seen how to use a URI to send in a where clause, consider the other method
by which Android lets us send a list of explicit columns and their corresponding values as a

15967ch03.indd 75 6/5/09 11:18:23 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS76

where clause. To explore this, let’s take another look at the managedQuery method of the Activity
class that we used in Listing 3-23. Here’s its signature:

public final Cursor managedQuery(Uri uri,
 String[] projection,
 String selection,
 String[] selectionArgs,
 String sortOrder)

Notice the argument named selection, which is of type String. This selection string
represents a filter (where clause, essentially) declaring which rows to return, formatted as a
SQL WHERE clause (excluding the WHERE itself). Passing null will return all rows for the
given URI. In the selection string you can include ?s, which will be replaced by the values
from selectionArgs in the order that they appear in the selection. The values will be bound as
Strings.

Because you have two ways of specifying a where clause, you might find it difficult to
determine how a provider has used these where clauses and which where clause takes prece-
dence if both where clauses are utilized.

For example, you can query for a note whose ID is 23 using either of these two methods:

//URI method
managedQuery("content://com.google.provider.NotePad/notes/23"
,null
,null
,null
,null);

or

//explicit where clause
managedQuery("content://com.google.provider.NotePad/notes"
,null
,"_id=?"
,new String[] {23}
,null);

The convention is to use where clauses through URIs where applicable and use the explicit
option as a special case.

Inserting records
So far we have talked about how to retrieve data from content providers using URIs. Let us
turn our attention to inserts, updates, and deletes. Let us start with insert first.

Android uses a class called android.content.ContentValues to hold the values for a
single record, which is to be inserted. ContentValues is a dictionary of key/value pairs,
much like column names and their values. You insert records by first populating a record
into ContentValues and then asking android.content.ContentResolver to insert that record
using a URI.

15967ch03.indd 76 6/5/09 11:18:23 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS 77

■Note You need to locate ContentResolver because at this level of abstraction, you are not asking a
database to insert a record; instead, you are asking to insert a record into a provider identified by a URI.
ContentResolver is responsible for resolving the URI reference to the right provider and then passing on
the ContentValues object to that specific provider.

Here is an example of populating a single row of notes in ContentValues in preparation for
an insert:

ContentValues values = new ContentValues();
values.put("title", "New note");
values.put("note","This is a new note");

//values object is now ready to be inserted

Although we have hard-coded the column names, you can use constants defined in
your Notepad application instead. You can get a reference to ContentResolver by asking the
Activity class:

ContentResolver contentResolver = activity.getContentResolver();

Now all you need is a URI to tell ContentResolver to insert the row. These URIs are defined
in a class corresponding to the Notes table. In the Notepad example, this URI is

Notepad.Notes.CONTENT_URI

We can take this URI and the ContentValues we have, and make a call to insert the row:

Uri uri = contentResolver.insert(Notepad.Notes.CONTENT_URI, values);

This call returns a URI pointing to the newly inserted record. This returned URI would
match the following structure:

Notepad.Notes.CONTENT_URI/new_id

adding a File to a Content provider
Occasionally you might need to store a file in a database. The usual approach is to save the file
to disk and then update the record in the database that points to the corresponding file name.

Android takes this protocol and automates it by defining a specific procedure for sav-
ing and retrieving these files. Android uses a convention where a reference to the file name is
saved in a record with a reserved column name of _data.

When a record is inserted into that table, Android returns the URI to the caller. Once you
save the record using this mechanism, you also need to follow it up by saving the file in that
location. To do this, Android allows ContentResolver to take the Uri of the database record
and return a writable output stream. Behind the scenes, Android allocates an internal file and
stores the reference to that file name in the _data field.

15967ch03.indd 77 6/5/09 11:18:23 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS78

If you were to extend the Notepad example to store an image for a given note, you could
create an additional column called _data and run an insert first to get a URI back. The follow-
ing code demonstrates this part of the protocol:

ContentValues values = new ContentValues();
values.put("title", "New note");
values.put("note","This is a new note");

//Use a content resolver to insert the record
ContentResolver contentResolver = activity.getContentResolver();
Uri newUri = contentResolver.insert(Notepad.Notes.CONTENT_URI, values);

Once you have the URI of the record, the following code asks the ContentResolver to get a
reference to the file output stream:

….
//Use the content resolver to get an output stream directly
//ContentResolver hides the access to the _data field where
//it stores the real file reference.
OutputStream outStream = activity.getContentResolver().openOutputStream(newUri);
someSourceBitmap.compress(Bitmap.CompressFormat.JPEG, 50, outStream);
outStream.close();

The code then uses that output stream to write to.

Updates and Deletes
So far we have talked about queries and inserts; updates and deletes are fairly straightforward.
Performing an update is similar to performing an insert, in which changed column values are
passed through a ContentValues object. Here is the signature of an update method on the
ContentResolver object:

int numberOfRowsUpdated =
activity.getContentResolver().update(
 Uri uri,
 ContentValues values,
 String whereClause,
 String[] selectionArgs)

The whereClause argument will constrain the update to the pertinent rows. Similarly, the
signature for the delete method is

int numberOfRowsDeleted =
activity.getContentResolver().update(
 Uri uri,
 String whereClause,
 String[] selectionArgs)

Clearly a delete method will not require the ContentValues argument because you will not
need to specify the columns you want when you are deleting a record.

15967ch03.indd 78 6/5/09 11:18:23 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS 79

Almost all the calls from managedQuery and ContentResolver are directed eventually to the
provider class. Knowing how a provider implements each of these methods gives us enough
clues as to how those methods are used by a client. In the next section, we’ll cover the imple-
mentation from scratch of an example content provider called BookProvider.

Implementing Content Providers
So we’ve discussed how to interact with a content provider for our data needs, but haven’t yet
discussed how to write a content provider. To write a content provider, you have to extend
android.content.ContentProvider and implement the following key methods:

query
insert
update
delete
getType

However, to make these methods work, you’ll have to set up a number of things before
implementing them. We will illustrate all the details of a content-provider implementation by
describing the steps you’ll need to take:

 1. Plan your database, URIs, column names, and so on, and create a metadata class that
defines constants for all of these metadata elements.

 2. Extend the abstract class ContentProvider.

 3. Implement these methods: query, insert, update, delete, and getType.

 4. Register the provider in the manifest file.

planning a Database
To explore this topic, we’ll create a database that contains a collection of books. The book
database contains only one table called books, and its columns are name, isbn, and author.
You’ll define this sort of relevant metadata in a Java class. This metadata-bearing Java class
BookProviderMetaData is shown in Listing 3-24. Some key elements of this metadata class are
highlighted.

Listing 3-24. Defining Metadata for Your Database: The BookProviderMetaData Class

public class BookProviderMetaData
{
 public static final String AUTHORITY = "com.androidbook.provider.BookProvider";

 public static final String DATABASE_NAME = "book.db";
 public static final int DATABASE_VERSION = 1;
 public static final String BOOKS_TABLE_NAME = "books";

 private BookProviderMetaData() {}

15967ch03.indd 79 6/5/09 11:18:24 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS80

 //inner class describing BookTable
 public static final class BookTableMetaData implements BaseColumns
 {
 private BookTableMetaData() {}
 public static final String TABLE_NAME = "books";

 //uri and MIME type definitions
 public static final Uri CONTENT_URI =
 Uri.parse("content://" + AUTHORITY + "/books");

 public static final String CONTENT_TYPE =
 "vnd.android.cursor.dir/vnd.androidbook.book";

 public static final String CONTENT_ITEM_TYPE =
 "vnd.android.cursor.item/vnd.androidbook.book";

 public static final String DEFAULT_SORT_ORDER = "modified DESC";

 //Additional Columns start here.
 //string type
 public static final String BOOK_NAME = "name";

 //string type
 public static final String BOOK_ISBN = "isbn";

 //string type
 public static final String BOOK_AUTHOR = "author";

 //Integer from System.currentTimeMillis()
 public static final String CREATED_DATE = "created";

 //Integer from System.currentTimeMillis()
 public static final String MODIFIED_DATE = "modified";
 }
}

This BookProviderMetaData class starts by defining its authority to be com.androidbook.
provider.BookProvider. We are going to use this string to register the provider in the Android
manifest file. This string forms the front part of the URIs intended for this provider.

This class then proceeds to define its one table (books) as an inner BookTableMetaData class.
The BookTableMetaData class then defines a URI for identifying a collection of books. Given the
authority in the previous paragraph, the URI for a collection of books will look like this:

content://com.androidbook.provider.BookProvider/books

This URI is indicated by the constant

BookProviderMetaData.BookTableMetaData.CONTENT_URI

15967ch03.indd 80 6/5/09 11:18:24 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS 81

The BookTableMetaData class then proceeds to define the MIME types for a collection of
books and a single book. The provider implementation will use these constants to return the
MIME types for the incoming URIs.

BookTableMetaData then defines the set of columns: name, isbn, author, created (creation
date), and modified (last-updated date).

■Note You should point out your columns’ data types through comments in the code.

The metadata class BookTableMetaData also inherits from the BaseColumns class that pro-
vides the standard _id field, which represents the row ID. With these metadata definitions in
hand, we’re ready to tackle the provider implementation.

extending Contentprovider
Implementing our BookProvider sample content provider involves extending the
ContentProvider class and overriding onCreate() to create the database and then imple-
ment the query, insert, update, delete, and getType methods. This section covers the setup
and creation of the database, while the following sections deal with each of the individual
methods: query, insert, update, delete, and getType.

A query method requires the set of columns it needs to return. This is similar to a select
clause that requires column names along with their as counterparts (sometimes called syn-
onyms). Android uses a map object that it calls a projection map to represent these column
names and their synonyms. We will need to set up this map so we can use it later in the query-
method implementation. In the code for the provider implementation (see Listing 3-25), you
will see this done up front.

Most of the methods we’ll be implementing take a URI as an input. The provider imple-
mentation needs a mechanism to distinguish one URI from the other; Android uses a class
called UriMatcher for this work. So we need to set up this object with all our URI variations.
You will see this code in Listing 3-25 after the segment that creates a projection map. We’ll
further explain the UriMatcher class in the section “Using UriMatcher to Figure Out the URIs,”
but for now, know that the code shown here allows the content provider to identify one URI
vs. the other.

And finally, the code in Listing 3-25 overrides the onCreate() method to facilitate the data-
base creation. We have demarcated the code with highlighted comments to reflect the three
areas we have talked about here:

	 •	 Setting	up	a	column	projection

	 •	 Setting	up	the	UriMatcher

	 •	 Creating	the	database

15967ch03.indd 81 6/5/09 11:18:24 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS82

Listing 3-25. Implementing the BookProvider Content Provider

public class BookProvider extends ContentProvider
{
 //Create a Projection Map for Columns
 //Projection maps are similar to "as" construct in an sql
 //statement whereby you can rename the
 //columns.
 private static HashMap<String, String> sBooksProjectionMap;
 static
 {
 sBooksProjectionMap = new HashMap<String, String>();
 sBooksProjectionMap.put(BookTableMetaData._ID, BookTableMetaData._ID);

 //name, isbn, author
 sBooksProjectionMap.put(BookTableMetaData.BOOK_NAME
 , BookTableMetaData.BOOK_NAME);
 sBooksProjectionMap.put(BookTableMetaData.BOOK_ISBN
 , BookTableMetaData.BOOK_ISBN);
 sBooksProjectionMap.put(BookTableMetaData.BOOK_AUTHOR
 , BookTableMetaData.BOOK_AUTHOR);

 //created date, modified date
 sBooksProjectionMap.put(BookTableMetaData.CREATED_DATE
 , BookTableMetaData.CREATED_DATE);
 sBooksProjectionMap.put(BookTableMetaData.MODIFIED_DATE
 , BookTableMetaData.MODIFIED_DATE);
 }

 //Provide a mechanism to identify all the incoming uri patterns.
 private static final UriMatcher sUriMatcher;
 private static final int INCOMING_BOOK_COLLECTION_URI_INDICATOR = 1;
 private static final int INCOMING_SINGLE_BOOK_URI_INDICATOR = 2;
 static {
 sUriMatcher = new UriMatcher(UriMatcher.NO_MATCH);
 sUriMatcher.addURI(BookProviderMetaData.AUTHORITY
 , "books"
 , INCOMING_BOOK_COLLECTION_URI_INDICATOR);

 sUriMatcher.addURI(BookProviderMetaData.AUTHORITY
 , "books/#",
 INCOMING_SINGLE_BOOK_URI_INDICATOR);

 }

15967ch03.indd 82 6/5/09 11:18:24 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS 83

// Deal with OnCreate call back

 private DatabaseHelper mOpenHelper;

 @Override
 public boolean onCreate() {
 mOpenHelper = new DatabaseHelper(getContext());
 return true;
 }

 private static class DatabaseHelper extends SQLiteOpenHelper {

 DatabaseHelper(Context context) {
 super(context, BookProviderMetaData.DATABASE_NAME, null
 , BookProviderMetaData.DATABASE_VERSION);
 }

//Create the database
 @Override
 public void onCreate(SQLiteDatabase db) {
 db.execSQL("CREATE TABLE " + BookTableMetaData.TABLE_NAME + " ("
 + BookProviderMetaData.BookTableMetaData._ID
 + " INTEGER PRIMARY KEY,"
 + BookTableMetaData.BOOK_NAME + " TEXT,"
 + BookTableMetaData.BOOK_ISBN + " TEXT,"
 + BookTableMetaData.BOOK_AUTHOR + " TEXT,"
 + BookTableMetaData.CREATED_DATE + " INTEGER,"
 + BookTableMetaData.MODIFIED_DATE + " INTEGER"
 + ");");
 }
//Deal with version changes
 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
 Log.w(TAG, "Upgrading database from version " + oldVersion + " to "
 + newVersion + ", which will destroy all old data");
 db.execSQL("DROP TABLE IF EXISTS " + BookTableMetaData.TABLE_NAME);
 onCreate(db);
 }
 }

Fulfilling MIMe-type Contracts
The BookProvider content provider must also implement the getType() method to return a
MIME type for a given URI. This method, like many other methods of a content provider, is
overloaded with respect to the incoming URI. As a result, the first responsibility of the getType()
method is to distinguish the type of the URI. Is it a collection of books, or a single book?

15967ch03.indd 83 6/5/09 11:18:24 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS84

As we pointed out in the previous section, we will use the UriMatcher to decipher this
URI type. Depending on this URI, the BookTableMetaData class has defined the MIME-type
constants to return for each URI. Without further ado, we present the complete code for the
getType() method implementation in Listing 3-26.

Listing 3-26. The getType() Method Implementation

 @Override
 public String getType(Uri uri) {
 switch (sUriMatcher.match(uri)) {
 case INCOMING_BOOK_COLLECTION_URI_INDICATOR:
 return BookTableMetaData.CONTENT_TYPE;

 case INCOMING_SINGLE_BOOK_URI_INDICATOR:
 return BookTableMetaData.CONTENT_ITEM_TYPE;

 default:
 throw new IllegalArgumentException("Unknown URI " + uri);
 }
 }

Implementing the Query Method
The query method in a content provider is responsible for returning a collection of rows
depending on an incoming URI and a where clause.

Like the other methods, the query method uses UriMatcher to identify the URI type. If the
URI type is a single-item type, the method retrieves the book ID from the incoming URI like this:

 1. It extracts the path segments using getPathSegments().

 2. It indexes into the URI to get the first path segment, which happens to be the book ID.

The query method then uses the projections that we created in Listing 3-25 to identify the
return columns. In the end, query returns the cursor to the caller. Throughout this process,
the query method uses the SQLiteQueryBuilder object to formulate and execute the query (see
Listing 3-27).

Listing 3-27. The query() Method Implementation

@Override
public Cursor query(Uri uri, String[] projection, String selection
 , String[] selectionArgs, String sortOrder)
{
 SQLiteQueryBuilder qb = new SQLiteQueryBuilder();

 switch (sUriMatcher.match(uri))
 {
 case INCOMING_BOOK_COLLECTION_URI_INDICATOR:
 qb.setTables(BookTableMetaData.TABLE_NAME);
 qb.setProjectionMap(sBooksProjectionMap);
 break;

15967ch03.indd 84 6/5/09 11:18:24 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS 85

 case INCOMING_SINGLE_BOOK_URI_INDICATOR:
 qb.setTables(BookTableMetaData.TABLE_NAME);
 qb.setProjectionMap(sBooksProjectionMap);
 qb.appendWhere(BookTableMetaData._ID + "="
 + uri.getPathSegments().get(1));
 break;

 default:
 throw new IllegalArgumentException("Unknown URI " + uri);
 }

 // If no sort order is specified use the default
 String orderBy;
 if (TextUtils.isEmpty(sortOrder)) {
 orderBy = BookTableMetaData.DEFAULT_SORT_ORDER;
 } else {
 orderBy = sortOrder;
 }

 // Get the database and run the query
 SQLiteDatabase db =
 mOpenHelper.getReadableDatabase();
 Cursor c = qb.query(db, projection, selection,
 selectionArgs, null, null, orderBy);
 int i = c.getCount();

 // Tell the cursor what uri to watch,
 // so it knows when its source data changes
 c.setNotificationUri(getContext().getContentResolver(), uri);
 return c;
 }

Implementing an Insert Method
The insert method in a content provider is responsible for inserting a record into the underly-
ing database and then returning a URI that points to the newly created record.

Like the other methods, insert uses UriMatcher to identify the URI type. The code first
checks whether the URI indicates the proper collection-type URI. If not, the code throws an
exception (see Listing 3-28).

 The code then validates the optional and mandatory column parameters. The code can
substitute default values for some columns if they are missing.

Next, the code uses a SQLiteDatabase object to insert the new record and returns the
newly inserted ID. In the end, the code constructs the new URI using the returned ID from the
database.

15967ch03.indd 85 6/5/09 11:18:24 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS86

Listing 3-28. The insert() Method Implementation

 @Override
 public Uri insert(Uri uri, ContentValues values) {
 // Validate the requested uri
 if (sUriMatcher.match(uri) != INCOMING_BOOK_COLLECTION_URI_INDICATOR) {
 throw new IllegalArgumentException("Unknown URI " + uri);
 }

 Long now = Long.valueOf(System.currentTimeMillis());

 //validate input fields
 // Make sure that the fields are all set
 if (values.containsKey(BookTableMetaData.CREATED_DATE) == false) {
 values.put(BookTableMetaData.CREATED_DATE, now);
 }

 if (values.containsKey(BookTableMetaData.MODIFIED_DATE) == false) {
 values.put(BookTableMetaData.MODIFIED_DATE, now);
 }

 if (values.containsKey(BookTableMetaData.BOOK_NAME) == false) {
 throw new SQLException(
 "Failed to insert row because Book Name is needed " + uri);
 }

 if (values.containsKey(BookTableMetaData.BOOK_ISBN) == false) {
 values.put(BookTableMetaData.BOOK_ISBN, "Unknown ISBN");
 }
 if (values.containsKey(BookTableMetaData.BOOK_AUTHOR) == false) {
 values.put(BookTableMetaData.BOOK_ISBN, "Unknown Author");
 }

 SQLiteDatabase db = mOpenHelper.getWritableDatabase();
 long rowId = db.insert(BookTableMetaData.TABLE_NAME
 , BookTableMetaData.BOOK_NAME, values);
 if (rowId > 0) {
 Uri insertedBookUri = ContentUris.withAppendedId(
 BookTableMetaData.CONTENT_URI, rowId);
 getContext().getContentResolver().notifyChange(insertedBookUri, null);
 return insertedBookUri;
 }

 throw new SQLException("Failed to insert row into " + uri);
 }

15967ch03.indd 86 6/5/09 11:18:24 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS 87

Implementing an Update Method
The update method in a content provider is responsible for updating a record based on the
column values passed in, as well as the where clause that is passed in. The update method then
returns the number of rows updated in the process.

Like the other methods, update uses UriMatcher to identify the URI type. If the URI type is
a collection, the where clause is passed through so it can affect as many records as possible. If
the URI type is a single-record type, then the book ID is extracted from the URI and specified
as an additional where clause. In the end, the code returns the number of records updated (see
Listing 3-29).

Listing 3-29. The update() Method Implementation

@Override
public int update(Uri uri, ContentValues values, String where, String[] whereArgs)
{
 SQLiteDatabase db = mOpenHelper.getWritableDatabase();
 int count;
 switch (sUriMatcher.match(uri)) {
 case INCOMING_BOOK_COLLECTION_URI_INDICATOR:
 count = db.update(BookTableMetaData.TABLE_NAME,
 values, where, whereArgs);
 break;

 case INCOMING_SINGLE_BOOK_URI_INDICATOR:
 String rowId = uri.getPathSegments().get(1);
 count = db.update(BookTableMetaData.TABLE_NAME
 , values
 , BookTableMetaData._ID + "=" + rowId
 + (!TextUtils.isEmpty(where) ? " AND (" + where + ')' : "")
 , whereArgs);
 break;

 default:
 throw new IllegalArgumentException("Unknown URI " + uri);
 }

 getContext().getContentResolver().notifyChange(uri, null);
 return count;
 }

Implementing a Delete Method
The delete method in a content provider is responsible for deleting a record based on the
where clause that is passed in. The delete method then returns the number of rows deleted in
the process.

15967ch03.indd 87 6/5/09 11:18:24 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS88

Like the other methods, delete uses UriMatcher to identify the URI type. If the URI type
is a collection type, the where clause is passed through so you can delete as many records as
possible. If the where clause is null, all records will be deleted. If the URI type is a single-record
type, the book ID is extracted from the URI and specified as an additional where clause. In the
end, the code returns the number of records deleted (see Listing 3-30).

Listing 3-30. The delete() Method Implementation

 @Override
 public int delete(Uri uri, String where, String[] whereArgs) {
 SQLiteDatabase db = mOpenHelper.getWritableDatabase();
 int count;
 switch (sUriMatcher.match(uri)) {
 case INCOMING_BOOK_COLLECTION_URI_INDICATOR:
 count = db.delete(BookTableMetaData.TABLE_NAME, where, whereArgs);
 break;

 case INCOMING_SINGLE_BOOK_URI_INDICATOR:
 String rowId = uri.getPathSegments().get(1);
 count = db.delete(BookTableMetaData.TABLE_NAME
 , BookTableMetaData._ID + "=" + rowId
 + (!TextUtils.isEmpty(where) ? " AND (" + where + ')' : "")
 , whereArgs);
 break;

 default:
 throw new IllegalArgumentException("Unknown URI " + uri);
 }
 getContext().getContentResolver().notifyChange(uri, null);
 return count;
 }

Using UriMatcher to Figure Out the UrIs
We’ve mentioned the UriMatcher class several times now; let’s delve into it. Almost all methods
in a content provider are overloaded with respect to the URI. For example, the same query()
method is called whether you want to retrieve a single book or a list of multiple books. It is up
to the method to know which type of URI is being requested. Android’s UriMatcher utility class
helps you identify the URI types.

Here’s how it works: you tell an instance of UriMatcher what kind of URI patterns to
expect. You will also associate a unique number with each pattern. Once these patterns are
registered, you can then ask UriMatcher if the incoming URI matches a certain pattern.

As we’ve mentioned, our BookProvider content provider has two URI patterns: one for a
collection of books, and one for a single book. The code in Listing 3-31 registers both these
patterns using UriMatcher. It allocates 1 for a collection of books and a 2 for a single book (the
URI patterns themselves are defined in the metadata for the books table).

15967ch03.indd 88 6/5/09 11:18:24 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS 89

Listing 3-31. Registering URI Patterns with UriMatcher

 private static final UriMatcher sUriMatcher;
 //define ids for each uri type
 private static final int INCOMING_BOOK_COLLECTION_URI_INDICATOR = 1;
 private static final int INCOMING_SINGLE_BOOK_URI_INDICATOR = 2;

 static {
 sUriMatcher = new UriMatcher(UriMatcher.NO_MATCH);
 //Register pattern for the books
 sUriMatcher.addURI(BookProviderMetaData.AUTHORITY
 , "books"
 , INCOMING_BOOK_COLLECTION_URI_INDICATOR);
 //Register pattern for a single book
 sUriMatcher.addURI(BookProviderMetaData.AUTHORITY
 , "books/#",
 INCOMING_SINGLE_BOOK_URI_INDICATOR);

 }

Now that this registration is in place, you can see how UriMatcher plays a part in the
query-method implementation:

switch (sUriMatcher.match(uri)) {
 case INCOMING_BOOK_COLLECTION_URI_INDICATOR:
 case INCOMING_SINGLE_BOOK_URI_INDICATOR:
 default:
 throw new IllegalArgumentException("Unknown URI " + uri);
}

Notice how the match method returns the same number that was registered earlier. The
constructor of UriMatcher takes an integer to use for the root URI. UriMatcher returns this
number if there are neither path segments nor authorities on the URL. UriMatcher also returns
NO_MATCH when the patterns don’t match. You can construct a UriMatcher with no root-matching
code; in that case, Android initializes UriMatcher to NO_MATCH internally. So you could have writ-
ten the code in Listing 3-31 as this instead:

static {
 sUriMatcher = new UriMatcher();
 sUriMatcher.addURI(BookProviderMetaData.AUTHORITY
 , "books"
 , INCOMING_BOOK_COLLECTION_URI_INDICATOR);

 sUriMatcher.addURI(BookProviderMetaData.AUTHORITY
 , "books/#",
 INCOMING_SINGLE_BOOK_URI_INDICATOR);
}

15967ch03.indd 89 6/5/09 11:18:24 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS90

Using projection Maps
A content provider acts like an intermediary between an abstract set of columns and a real set
of columns in a database, yet these column sets might differ. While constructing queries, you
must map between the where-clause columns that a client specifies and the real database col-
umns. You set up this projection map with the help of the SQLiteQueryBuilder class.

Here is what the Android SDK documentation says about the mapping method public
void setProjectionMap(Map columnMap) available on the QueryBuilder class:

Sets the projection map for the query. The projection map maps from column names

that the caller passes into query to database column names. This is useful for renaming

columns as well as disambiguating column names when doing joins. For example you

could map “name” to “people.name”. If a projection map is set it must contain all col-

umn names the user may request, even if the key and value are the same.

Here is how our BookProvider content provider sets up the projection map:

sBooksProjectionMap = new HashMap<String, String>();
sBooksProjectionMap.put(BookTableMetaData._ID, BookTableMetaData._ID);

//name, isbn, author
sBooksProjectionMap.put(BookTableMetaData.BOOK_NAME
 , BookTableMetaData.BOOK_NAME);
sBooksProjectionMap.put(BookTableMetaData.BOOK_ISBN
 , BookTableMetaData.BOOK_ISBN);
sBooksProjectionMap.put(BookTableMetaData.BOOK_AUTHOR
 , BookTableMetaData.BOOK_AUTHOR);

//created date, modified date
sBooksProjectionMap.put(BookTableMetaData.CREATED_DATE
 , BookTableMetaData.CREATED_DATE);
sBooksProjectionMap.put(BookTableMetaData.MODIFIED_DATE
 , BookTableMetaData.MODIFIED_DATE);

And then the query builder uses the variable sBooksProjectionMap like this:

queryBuilder.setTables(NOTES_TABLE_NAME);
queryBuilder.setProjectionMap(sNotesProjectionMap);

registering the provider
Finally, you must register the content provider in the Android.Manifest.xml file using this tag
structure:

<provider android:name="BooksProvider"
 android:authorities=" com.androidbook.provider.BookProvider "/>

This concludes our discussion about content providers. In this section, you learned the
nature of content URIs and MIME types, and how to use SQLite to construct your own providers

15967ch03.indd 90 6/5/09 11:18:24 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS 91

that respond to URIs. Once your underlying data is exposed in this manner, any application on
the Android Platform can take advantage of it. This ability to access and update data using URIs,
irrespective of the process boundaries, falls right in step with the current service-centric, cloud-
computing landscape that we described in Chapter 1. In the next section, we will cover intents.

Understanding Intents
Android folds multiple ideas into the concept of an intent. You can use intents to invoke other
applications from your application. You can use intents to invoke internal or external compo-
nents from your application. You can use intents to raise events so that others can respond in a
manner similar to a publish-and-subscribe model. You can use intents to represent actions.

At the simplest level, an intent is an action that you can tell Android to invoke. The action
Android invokes depends on what is registered for that action. Imagine you’ve written the fol-
lowing activity:

public class BasicViewActivity extends Activity
{
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.some-view);
 }
}//eof-class

Android allows you to register this activity in its manifest file, making it available for other
applications to invoke. The registration looks like this:

 <activity android:name="BasicViewActivity"
 android:label="Basic View Tests">
 <intent-filter>
 <action android:name="com.androidbook.intent.action.ShowBasicView"/>
 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>
 </activity>

The registration here not only involves an activity, but also an action that you can use to
invoke that activity. The activity designer usually chooses a name for the action and specifies
that action as part of an intent-filter for this activity. As we go through the rest of the chapter,
you will have a chance to learn more about these intent-filters.

Now that you have specified the activity and its registration against an action, you can use
an intent to invoke this BasicViewActivity:

public static invokeMyApplication(Activity parentActivity)
{
 String actionName= " com.androidbook.intent.action.ShowBasicView ";
 Intent intent = new Intent(actionName);
 parentActivity.startActivity(intent);
}

15967ch03.indd 91 6/5/09 11:18:24 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS92

■Note The general convention for an action name is <your-package-name>.intent.action.YOUR_
ACTION_NAME.

Available Intents in Android
Now that you have a basic understanding of intents, you can give them a test run by invoking one
of the prefabricated applications that comes with Android (see Listing 3-32). The page at http://
developer.android.com/guide/appendix/g-app-intents.html documents the available applica-
tions and the intents that invoke them. The predefined applications include the following:

	 •	 A	browser	application	to	open	a	browser	window	

	 •	 An	application	to	call	a	telephone	number	

	 •	 An	application	to	present	a	phone	dialer	so	the	user	can	enter	the	numbers	and	make	
the call through the UI

	 •	 A	mapping	application	to	show	the	map	of	the	world	at	a	given	latitude/longitude	
coordinate

	 •	 A	detailed	mapping	application	that	can	show	Google	street	views	

Listing 3-32. Exercising Android’s Prefabricated Applications

public class IntentsUtils
{
 public static void invokeWebBrowser(Activity activity)
 {
 Intent intent = new Intent(Intent.ACTION_VIEW);
 intent.setData(Uri.parse("http://www.google.com"));
 activity.startActivity(intent);
 }
 public static void invokeWebSearch(Activity activity)
 {
 Intent intent = new Intent(Intent.ACTION_WEB_SEARCH);
 intent.setData(Uri.parse("http://www.google.com"));
 activity.startActivity(intent);
 }
 public static void dial(Activity activity)
 {
 Intent intent = new Intent(Intent.ACTION_DIAL);
 activity.startActivity(intent);
 }

15967ch03.indd 92 6/5/09 11:18:24 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS 93

 public static void call(Activity activity)
 {
 Intent intent = new Intent(Intent.ACTION_CALL);
 intent.setData(Uri.parse("tel:555-555-5555"));
 activity.startActivity(intent);
 }
 public static void showMapAtLatLong(Activity activity)
 {
 Intent intent = new Intent(Intent.ACTION_VIEW);
 //geo:lat,long?z=zoomlevel&q=question-string
 intent.setData(Uri.parse("geo:0,0?z=4&q=business+near+city"));
 activity.startActivity(intent);
 }

 public static void tryOneOfThese(Activity activity)
 {
 IntentsUtils.call(activity);
 }
}

You will be able to exercise this code as long you have a simple activity with a simple view
(like the one in the previous section) and a menu item to invoke tryOneOfThese(activity).
Creating a simple menu is easy (see Listing 3-33).

Listing 3-33. A Test Harness to Create a Simple Menu

public class HelloWorld extends Activity
{
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 TextView tv = new TextView(this);
 tv.setText("Hello, Android. Say hello");
 setContentView(tv);
 registerMenu(this.getTextView());
 }
 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 super.onCreateOptionsMenu(menu);
 int base=Menu.FIRST; // value is 1
 MenuItem item1 = menu.add(base,base,base,"Test");
 return true;
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 if (item.getItemId() == 1) {
 IntentUtils.tryOneOfThese(this);
 }

15967ch03.indd 93 6/5/09 11:18:24 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS94

 else {
 return super.onOptionsItemSelected(item);
 }
 return true;
 }
}

■Note See Chapter 2 for instructions on how to make an Android project out of these files, as well as how to
compile and run it. You can also read the early parts of Chapter 5 to see more sample code relating to menus.

Intents and Data URIs
So far we’ve covered the simplest of the intents, where all we need is the name of an action.
The ACTION_DIAL activity in Listing 3-32 is one of these. So to invoke the dialer, all we need is
the dialer’s action and nothing else:

 public static void dial(Activity activity)
 {
 Intent intent = new Intent(Intent.ACTION_DIAL);
 activity.startActivity(intent);
 }

Unlike ACTION_DIAL, the intent ACTION_CALL that is used to make a call to a given phone
number takes an additional parameter called Data. This parameter points to a URI, which in
turn points to the phone number:

 public static void call(Activity activity)
 {
 Intent intent = new Intent(Intent.ACTION_CALL);
 intent.setData(Uri.parse("tel:555-555-5555"));
 activity.startActivity(intent);
 }

The action portion of an intent is a string or a string constant, usually prefixed by the Java
package name. The data portion is always a string representing a URI. The format of this URI
could be specific to each activity that is invoked by that action. In this case, the CALL action
decides what kind of data URI it would expect. From the URI it extracts the telephone number.

■Note The invoked activity can also use the URI as a pointer to a data source, and extract the data from the
data source and use that data instead. This would be the case for media such as audio, video, and images.

15967ch03.indd 94 6/5/09 11:18:24 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS 95

Generic Actions
The actions Intent.ACTION_CALL and Intent.ACTION_DIAL could easily lead us to the wrong
assumption that there is a one-to-one relationship between an action and what it invokes. To
disprove this, let us extract a counterexample from the IntentUtils code in Listing 3-32:

 public static void invokeWebBrowser(Activity activity)
 {
 Intent intent = new Intent(Intent.ACTION_VIEW);
 intent.setData(Uri.parse("http://www.google.com"));
 activity.startActivity(intent);
 }

Note that the action is simply stated as ACTION_VIEW. How does Android know which activ-
ity to invoke in response to such a generic action name? In these cases, Android relies more
heavily on the nature of the URI. Android looks at the scheme of the URI, which happens to
be http, and questions all the registered activities to see which ones understand this scheme.
Out of these, it inquires which ones can handle the VIEW and then invokes that activity. For this
to work, the browser activity should have registered a VIEW intent against the data scheme of
http. That intent declaration might look like this in the manifest file:

<activity…..>
 <intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <data android:scheme="http"/>
 <data android:scheme="https"/>
</intent-filter>
</activity>

You can learn more about the data options by looking at the XML definition for the
data element at http://code.google.com/android/reference/android/R.styleable.
html#AndroidManifestData. The child elements or attributes of data include these:

host
mimeType
path
pathPattern
pathPrefix
port
scheme

mimeType is one attribute you’ll see used often. For example, the following intent-filter for
the activity that displays a list of notes indicates the MIME type as a directory of notes:

<intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <data android:mimeType="vnd.android.cursor.dir/vnd.google.note" />
</intent-filter>

The screen that displays a single note, on the other hand, declares its intent-filter using a
MIME type indicating a single note item:

15967ch03.indd 95 6/5/09 11:18:25 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS96

<intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <data android:mimeType="vnd.android.cursor.item/vnd.google.note" />
</intent-filter>

Using Extra Information
In addition to its primary attributes of action and data, an intent can include additional attri-
butes called extras. An extra can provide more information to the component that receives
the intent. The extra data is in the form of key/value pairs: the key name should start with the
package name, and the value name can be any fundamental data type or arbitrary object as
long as it implements the android.os.Parcelable interface. This extra information is repre-
sented by an Android class called android.os.Bundle.

The following two methods on an Intent class provide access to the extra Bundle:

 //Get the Bundle from an Intent
 Bundle extraBundle = intent.getExtras();

 // Place a bundle in an intent
 Bundle anotherBundle = new Bundle();

 //populate the bundle with key/value pairs
 …..
 //set the bundle on the Intent
 intent.putExtras(anotherBundle);

getExtras is straightforward: it returns the Bundle that the intent has. putExtras checks
whether the intent currently has a bundle. If the intent already has a bundle, putExtras trans-
fers the additional keys and values from the new bundle to the existing bundle. If the bundle
doesn’t exist, putExtras will create one and copy the key/value pairs from the new bundle to
the created bundle.

■Note putExtras replicates the incoming bundle rather than referencing it. So if you were to change the
incoming bundle, you wouldn’t be changing the bundle inside the intent.

You can use a number of methods to add fundamental types to the bundle. Here are some
of the methods that add simple data types to the extra data:

putExtra(String name, boolean value);
putExtra(String name, int value);
putExtra(String name, double value);
putExtra(String name, String value);

15967ch03.indd 96 6/5/09 11:18:25 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS 97

And here are some not-so-simple extras:

//simple array support
putExtra(String name, int[] values);
putExtra(String name, float[] values);

//Serializable objects
putExtra(String name, Serializable value);

//Parcelable support
putExtra(String name, Parcelable value);

//Add another bundle at a given key
//Bundles in bundles
putExtra(String name, Bundle value);

//Add bundles from another intent
//copy of bundles
putExtra(String name, Intent anotherIntent);

//Explicit Array List support
putIntegerArrayListExtra(String name, ArrayList arrayList);
putParcelableArrayListExtra(String name, ArrayList arrayList);
putStringArrayListExtra(String name, ArrayList arrayList);

On the receiving side, equivalent methods starting with get retrieve information from the
extra bundle based on key names.

The Intent class defines extra key strings that go with certain actions. You can discover
a number of these extra-information key constants at http://code.google.com/android/
reference/android/content/Intent.html#EXTRA_ALARM_COUNT.

Let us consider a couple of example extras that involve sending e-mails:

EXTRA_EMAIL: You will use this string key to hold a set of e-mail addresses. The value of
the key is android.intent.extra.EMAIL. It should point to a string array of textual e-mail
addresses.

EXTRA_SUBJECT: You will use this key to hold the subject of an e-mail message. The value of
the key is android.intent.extra.SUBJECT. The key should point to a string of subject.

Using Components to Directly Invoke an Activity
You’ve seen a couple of ways to start an activity using intents. You saw an explicit action start
an activity, and you saw a generic action start an activity with the help of a data URI. Android
also provides a more direct way to start an activity: you can specify the activity’s ComponentName,
which is an abstraction around an object’s package name and class name. There are a number
of methods available on the Intent class to specify a component:

15967ch03.indd 97 6/5/09 11:18:25 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS98

setComponent(ComponentName name);
setClassName(String packageName, String classNameInThatPackage);
setClassName(Context context, String classNameInThatContext);
setClass(Context context, Class classObjectInThatContext);

Ultimately, they are all shortcuts for calling one method:

setComponent(ComponentName name);

ComponentName wraps a package name and a class name together. For example, the follow-
ing code invokes the contacts activity that ships with the emulator:

Intent intent = new Intent();
intent.setComponent(new ComponentName(
 "com.android.contacts"
 ,"com.android.contacts.DialtactsContactsEntryActivity");
startActivity(intent)

Notice that the package name and the class name are fully qualified, and are used in turn
to construct the ComponentName before passing to the Intent class.

You can also use the class name directly without constructing a ComponentName. Consider
the BasicViewActivity code snippet again:

public class BasicViewActivity extends Activity
{
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.some-view);
 }
}//eof-class

Given this, you can use the following code to start this activity:

Intent directIntent = new Intent(activity, BasicViewActivity.class);
activity.start(directIntent);

If you want any type of intent to start an activity, however, you should register the activity
in the Android.Manifest.xml file like this:

 <activity android:name="BasicViewActivity"
 android:label="Test Activity">

No intent-filters are necessary for invoking an activity directly through its class name or
component name.

15967ch03.indd 98 6/5/09 11:18:25 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS 99

Best Practice for Component Designers
If you look at the design for the contacts application in Android, you will notice some pat-
terns for designing with intents. To make intents known to the clients of this application, the
contacts application defines them in three classes in a package called android.provider.
contacts. These three classes are as follows:

contacts.Intents
contacts.Intents.Insert //nested class
contacts.Intents.UI //nested class

The top-level class contacts.Intents defines the primary intents that the contacts appli-
cation will respond to and the events that the app generates as it does its work.

The nested class contacts.Intents.Insert defines the supporting intents and other con-
stants to insert new records. The contacts.Intents.UI nested class defines a number of ways
to invoke the UI. The intents also clarify the extra information needed to invoke them, includ-
ing key names and their expected value types.

As you design your own content providers and activities that act upon those content pro-
viders, you might want to follow this pattern for making intents explicit by defining constants
for them in interfaces or classes.

Understanding Intent Categories
You can classify activities into categories so you can search for them based on a category
name. For example, during startup Android looks for activities whose category (also known
as a tag) is marked as CATEGORY_LAUNCHER. It then picks up these activity names and icons and
places them on the home screen to launch.

Another example: Android looks for an activity tagged as CATEGORY_HOME to show the home
screen during startup. Similarly, CATEGORY_GADGET marks an activity as suitable for embedding
or reuse inside another activity.

The format of the string for a category like CATEGORY_LAUNCHER follows the category defini-
tion convention:

android.intent.category.LAUNCHER

You will need to know these text strings for category definitions because activities register
their categories in the AndroidManifest.xml file as part of their activity-filter definitions. Here
is an example:

 <activity android:name=".HelloWorld"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

15967ch03.indd 99 6/5/09 11:18:25 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS100

■Note Activities might have certain capabilities that restrict them or enable them, such as whether you can
embed them in a parent activity. These types of activity characteristics are declared through categories.

Let us take a quick look at some predefined Android categories and how you use them
(see Table 3-2).

Table 3-2. Activity Categories and Their Descriptions

Category Name Description

CATEGORY_DEFAULT An activity can declare itself as a DEFAULT activity to oper-
ate on a certain aspect of data such as type, scheme, and
so on.

CATEGORY_BROWSABLE An activity can declare itself as BROWSABLE by promising the
browser that it will not violate browser-security consider-
ations when started.

CATEGORY_TAB An activity of this type is embeddable in a tabbed parent
activity.

CATEGORY_ALTERNATIVE An activity can declare itself as an ALTERNATIVE activity
for a certain type of data that you are viewing. These items
normally show up as part of the options menu when you
are looking at that document. For example, print view is
considered an alternative to regular view.

CATEGORY_SELECTED_ALTERNATIVE An activity can declare itself as an ALTERNATIVE activity for
a certain type of data. This is similar to listing a series of
possible editors for a text document or an HTML docu-
ment.

CATEGORY_LAUNCHER Assigning this category to an activity will allow it to be
listed on the launcher screen.

CATEGORY_HOME An activity of this type will be the home screen. Typically,
there should be only one activity of this type. If there are
more, the system will prompt you to pick one.

CATEGORY_PREFERENCE This activity identifies an activity as a preference activity,
so it will be shown as part of the preferences screen.

CATEGORY_GADGET An activity of this type is embeddable in a parent activity.

CATEGORY_TEST A test activity.

CATEGORY_EMBED This category has been superseded by the GADGET category,
but it’s been kept for backward compatibility.

You can read the details of these activity categories at the following Android SDK URL
for the Intent class: http://code.google.com/android/reference/android/content/Intent.
html#CATEGORY_ALTERNATIVE.

When you use an intent to start an activity, you can specify the kind of activity to
choose by specifying a category. Or you can search for activities that match a certain cat-
egory. Here is an example to retrieve a set of main activities that match the category of
CATEGORY_SAMPLE_CODE:

15967ch03.indd 100 6/5/09 11:18:25 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS 101

Intent mainIntent = new Intent(Intent.ACTION_MAIN, null);
mainIntent.addCategory(Intent.CATEGORY_SAMPLE_CODE);
PackageManager pm = getPackageManager();
List<ResolveInfo> list = pm.queryIntentActivities(mainIntent, 0);

PackageManager is a key class that allows you to discover activities that match certain
intents without invoking them. You can cycle through the received activities and invoke them
as you see fit, based on the ResolveInfo API.

Following the same logic, you can also get a list of all launchable applications by populat-
ing an intent with a category of CATEGORY_LAUNCHER:

//Get me all launchable applications
Intent mainIntent = new Intent(Intent.ACTION_MAIN, null);
mainIntent.addCategory(Intent.CATEGORY_LAUNCHER);
List mApps = getPackageManager().queryIntentActivities(mainIntent, 0);

In fact, we can do better. Let’s start an activity based on the preceding intent category
CATEGORY_LAUNCHER:

 public static void invokeAMainApp(Activity activity)
 {
 Intent mainIntent = new Intent(Intent.ACTION_MAIN, null);
 mainIntent.addCategory(Intent.CATEGORY_LAUNCHER);
 activity.startActivity(mainIntent);
 }

More than one activity will match the intent, so which activity will Android pick? To
resolve this, Android presents a “Complete action using” dialog that lists all the possible activi-
ties so that you can choose one to run.

Here is another example of using an intent to go to a home page:

//Go to home screen
Intent mainIntent = new Intent(Intent.ACTION_MAIN, null);
mainIntent.addCategory(Intent.CATEGORY_HOME);
startActivity(mainIntent);

If you don’t want to use Android’s default home page, you can write your own and declare
that activity to be of category HOME. In that case, the preceding code will give you an option to
open your home activity because more than one home activity is registered now:

//Replace the home screen with yours
<intent-filter>
 <action android:value="android.intent.action.MAIN" />
 <category android:value="android.intent.category.HOME"/>
 <category android:value="android.intent.category.DEFAULT" />
</intent-filter>

15967ch03.indd 101 6/5/09 11:18:25 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS102

The Rules for Resolving Intents to Their Components
So far, we have discussed a number of aspects about intents. To recap, we talked about
actions, data URIs, extra data, and finally categories. Given these aspects, Android uses the fol-
lowing algorithm to resolve the intents to activities.

At the top of the hierarchy, with an air of exclusivity, is the component name attached
to an intent. If this is set, then every other aspect or attribute of the intent is ignored and that
component is chosen for execution.

Android then looks at the action attribute of the intent. If the intent indicates an action,
then the target activity must list that action as part of its intent-filter. If no other attributes are
specified, then Android invokes this activity. If there are multiple activities, Android will pres-
ent the activity chooser.

Android then looks at the data portion of the intent. If the intent specifies a data URI, the
type is retrieved from this URI via ContentProvider.getType() if it is not already supplied in
the intent. The target activity must indicate through an intent-filter that it can handle data of
this type. If the data URI is not a content URI or the data type is not specified, then the URI
scheme is taken into account. The target activity then should indicate that it could handle the
URIs of this type of scheme.

Android then looks at the category. Android will only pick activities matching that cat-
egory. As a result, if the intent category is specified, then the target activity should declare this
category in its intent-filter.

Exercising the ACTION_PICK
So far we have exercised intents or actions that mainly invoke another activity without expect-
ing any results back. Now let’s look at an action that is a bit more involved in that it returns a
value after being invoked. ACTION_PICK is one such generic action.

The idea of ACTION_PICK is to start an activity that displays a list of items. The activity then
should allow a user to pick one item from that list. Once the user picks the item, the activity
should return the URI of the picked item to the caller. This allows reuse of the UI’s functional-
ity to select items of a certain type.

You should indicate the collection of items to choose from using a MIME type that
points to an Android content cursor. The actual MIME type of this URI should look similar
to the following:

vnd.android.cursor.dir/vnd.google.note

It is the responsibility of the activity to retrieve the data from the content provider based
on the URI. This is also the reason that data should be encapsulated into content providers
where possible.

For all actions that return data like this, we cannot use startActivity() because
startActivity() does not return any result. startActivity() cannot return a result because
it opens the new activity as a modal dialog in a separate thread and leaves the main thread for
attending events. In other words, startActivity() is an asynchronous call with no callbacks to
indicate what happened in the invoked activity. But if you want to return data, you can use a
variation on startActivity() called startActivityForResult(), which comes with a callback.

15967ch03.indd 102 6/5/09 11:18:25 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS 103

Let us look at the signature of the startActivityForResult() method from the Activity
class:

public void startActivityForResult(Intent intent, int requestCode)

This method launches an activity from which you would like a result. When this activity
exits, the source activity’s onActivityResult() method will be called with the given requestCode.
The signature of this callback method is

protected void onActivityResult(int requestCode, int resultCode, Intent data)

The requestCode is what you passed in to the startActivityForResult() method. The
resultCode can be RESULT_OK, RESULT_CANCELED, or a custom code. The custom codes should
start at RESULT_FIRST_USER. The Intent parameter contains any additional data that the
invoked activity wants to return. In the case of ACTION_PICK, the returned data in the intent
points to the data URI of a single item (see Listing 3-34).

Listing 3-34. Returning Data After Invoking an Action

public static void invokePick(Activity activity)
{
 Intent pickIntent = new Intent(Intent.ACTION_PICK);
 int requestCode = 1;
 pickIntent.setData(Uri.parse(
 "content://com.google.provider.NotePad/notes"));
 activity.startActivityForResult(pickIntent, requestCode);
}

protected void onActivityResult(int requestCode
 ,int resultCode
 ,Intent outputIntent)
{
 super.onActivityResult(requestCode, resultCode, outputIntent);
 parseResult(this, requestCode, resultCode, outputIntent);
}
public static void parseResult(Activity activity
 , int requestCode
 , int resultCode
 , Intent outputIntent)
{
 if (requestCode != 1)
 {
 Log.d("Test", "Some one else called this. not us");
 return;
 }
 if (resultCode != Activity.RESULT_OK)
 {
 Log.d("Result code is not ok:" + resultCode);
 return;
 }

15967ch03.indd 103 6/5/09 11:18:25 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS104

 Log.d("Test", "Result code is ok:" + resultCode);
 Uri selectedUri = outputIntent.getData();
 Log.d("Test", "The output uri:" + selectedUri.toString());

 //Proceed to display the note
 outputIntent.setAction(Intent.VIEW);
 startActivity(outputIntent);
}

The constants RESULT_OK, RESULT_CANCEL, and RESULT_FIRST_USER are all defined in the
Activity class. The numerical values of these constants are

RESULT_OK = -1;
RESULT_CANCEL = 0;
RESULT_FIRST_USER = 1;

To make this work, the implementer should have code that explicitly addresses the
needs of a PICK. Let’s look at how this is done in the Google sample Notepad application.
When the item is selected in the list of items, the intent that invoked the activity is checked to
see whether it’s a PICK intent. If it is, the data URI is set in a new intent and returned through
setResult():

@Override
protected void onListItemClick(ListView l, View v, int position, long id) {
 Uri uri = ContentUris.withAppendedId(getIntent().getData(), id);

 String action = getIntent().getAction();
 if (Intent.ACTION_PICK.equals(action) ||
 Intent.ACTION_GET_CONTENT.equals(action))
 {
 // The caller is waiting for us to return a note selected by
 // the user. They have clicked on one, so return it now.
 setResult(RESULT_OK, new Intent().setData(uri));
 } else {
 // Launch activity to view/edit the currently selected item
 startActivity(new Intent(Intent.ACTION_EDIT, uri));
 }
}

Exercising the GET_CONTENT Action
ACTION_GET_CONTENT is similar to ACTION_PICK. In the case of ACTION_PICK, you are specifying a
URI that points to a collection of items such as a collection of notes. You will expect the action
to pick one of the notes and return it to the caller. In the case of ACTION_GET_CONTENT, you indi-
cate to Android that you need an item of a particular MIME type. Android searches for either
activities that can create one of those items or activities that can choose from an existing set of
items that satisfy that MIME type.

15967ch03.indd 104 6/5/09 11:18:25 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS 105

Using ACTION_GET_CONTENT, you can pick a note from a collection of notes supported by
the Notepad application using the following code:

public static void invokeGetContent(Activity activity)
{
 Intent pickIntent = new Intent(Intent.ACTION_GET_CONTENT);
 int requestCode = 2;
 pickIntent.setType("vnd.android.cursor.item/vnd.google.note");
 activity.startActivityForResult(pickIntent, requestCode);
}

Notice how the intent type is set to the MIME type of a single note. Contrast this with the
ACTION_PICK code in the following snippet, where the input is a data URI:

public static void invokePick(Activity activity)
{
 Intent pickIntent = new Intent(Intent.ACTION_PICK);
 int requestCode = 1;
 pickIntent.setData(Uri.parse(
 "content://com.google.provider.NotePad/notes"));
 activity.startActivityForResult(pickIntent, requestCode);
}

For an activity to respond to ACTION_GET_CONTENT, the activity has to register an intent-
filter indicating that the activity can provide an item of that MIME type. Here is how the SDK’s
Notepad application accomplishes this:

<activity android:name="NotesList" android:label="@string/title_notes_list">
……
<intent-filter>
 <action android:name="android.intent.action.GET_CONTENT" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:mimeType="vnd.android.cursor.item/vnd.google.note" />
 </intent-filter>
…..
</activity>

The rest of the code for responding to onActivityResult() is identical to the previous
ACTION_PICK example. If there are multiple activities that can return the same MIME type,
Android will show you the chooser dialog to let you pick an activity. The default chooser might
not allow you to pick a different title, however. To address this restriction, Android provides
the createChooser method on the Intent class that lets you use a specialized chooser whose
title can be changed. Here is an example of how to invoke such a chooser:

//start with your target Intent type you want to pick
Intent intent = new Intent();
intent.setType(…);
Intent chooserIntent = Intent.createChooser(intent, "Hello use this title");
activity.startActivityForResult(chooserIntent);

15967ch03.indd 105 6/5/09 11:18:25 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 3 ■ USING reSOUrCeS, CONteNt prOVIDerS, aND INteNtS106

Summary
In this chapter we covered the Android SDK’s three key concepts: resources, content provid-
ers, and intents. In the section on resources, you learned how to create resources in XML
files and use their resource IDs in programming. In the section about content providers, you
learned how to work with URIs and MIME types, along with how to encapsulate data access in
a content provider. You also learned the basics of creating and using a SQLite database, which
should work well even if you use it without a content-provider abstraction. The third section
showed you how to use intents to start other activities in a number of ways. Now you know
how intents pave the way for plug-and-play and accomplish reuse at the UI level. With a good
grasp of these three concepts, you should find it much easier to understand the Android SDK
and Android UI programming in general.

15967ch03.indd 106 6/5/09 11:18:25 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

C h a p t e r 4

Building User Interfaces and
Using Controls

Thus far, we have covered the fundamentals of Android but have not touched the user inter-
face (UI). In this chapter, we are going to discuss user interfaces and controls. We will begin by
discussing the general philosophy of UI development in Android, then we’ll describe the com-
mon UI controls that ship with the Android SDK. We will also discuss layout managers and
view adapters. We will conclude by discussing the Hierarchy Viewer tool—a tool used to debug
and optimize Android UIs.

UI Development in Android
UI development in Android is fun. It’s fun because the unattractive features in some other
platforms are absent from Android. Swing, for example, has to support desktop applications as
well as Java applets. Thus, the Java Foundation Classes (JFC) contains so much functionality
that it’s frustrating to use and difficult to navigate. JavaServer Faces (JSF) is another example.
JSF, a common framework used to build web applications, is actually built on top of JavaServer
Pages (JSP) and servlets. So you have to know all of the underlying frameworks before you can
begin working with JSF.

Fortunately, this type of baggage carried by other platforms does not exist in Android.
With Android, we have a simple framework with a limited set of out-of-the-box controls. The
available screen area is generally limited. This, combined with the fact that the user usually
wants to do one specific action, allows us to easily build a good user interface to deliver a good
user experience.

The Android SDK ships with a host of controls that you can use to build user interfaces for
your application. Similar to other SDKs, the Android SDK provides text fields, buttons, lists,
grids, and so on. In addition, Android also provides a collection of controls that are appropri-
ate for mobile devices.

At the heart of the common controls are two classes: android.view.View and android.
view.ViewGroup. As the name of the first class suggests, the View class represents a general-
purpose View object. The common controls in Android ultimately extend the View class.

107

15967ch04.indd 107 6/5/09 11:18:08 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 4 ■ BUILDING USer INterFaCeS aND USING CONtrOLS108

ViewGroup is also a view, but contains other views too. ViewGroup is the base class for a list of
layout classes. Android, like Swing, uses the concept of layouts to manage how controls are
laid out within a container view. Using layouts, as we’ll see, makes it easy for us to control the
position and orientation of the controls in our user interfaces.

You can choose from several approaches to build user interfaces in Android. You can
construct user interfaces entirely in code. You can also define user interfaces in XML. You can
even combine the two—define the user interface in XML and then refer to it, and modify it, in
code. To demonstrate this, we are going to build a simple user interface using each of these
three approaches.

Before we get started, let’s define some nomenclature. In this book and other Android
literature, you will find the terms view, control, widget, container, and layout in discussions
regarding UI development. If you are new to Android programming or UI development in
general, you might not be familiar with these terms. We’ll briefly describe them before we get
started (see Table 4-1).

Table 4-1. UI Nomenclature

Term Description

View, Widget, Control Each of these represents a user interface element. Examples include a
button, a grid, a list, a window, a dialog box, and so on. The terms “view,”
“widget,” and “control” are used interchangeably in this chapter.

Container This is a view used to contain other views. For example, a grid can be
considered a container because it contains cells, each of which is a view.

Layout This is an XML file used to describe a view.

Figure 4-1 shows a screenshot of the application that we are going to build. Next to the
screenshot is the layout hierarchy of the controls and containers in the application.

Figure 4-1. The user interface and layout of an activity

We will refer to this layout hierarchy as we discuss the sample programs. For now, know
that the application has one activity. The user interface for the activity is composed of three
containers: a container that contains a person’s name, a container that contains the address,
and an outer parent container for the child containers.

The first example, Listing 4-1, demonstrates building the user interface entirely in code.
To try this out, create a new Android project with an activity named MainActivity and then
copy the code from Listing 4-1 into your MainActivity class.

15967ch04.indd 108 6/5/09 11:18:08 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 4 ■ BUILDING USer INterFaCeS aND USING CONtrOLS 109

Listing 4-1. Creating a Simple User Interface Entirely in Code

package pro.android;
import android.app.Activity;
import android.os.Bundle;
import android.view.ViewGroup.LayoutParams;
import android.widget.LinearLayout;
import android.widget.TextView;
public class MainActivity extends Activity
{
 private LinearLayout nameContainer;

 private LinearLayout addressContainer;

 private LinearLayout parentContainer;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);

 createNameContainer();

 createAddressContainer();

 createParentContainer();

 setContentView(parentContainer);

 }

 private void createNameContainer()
 {
 nameContainer = new LinearLayout(this);

 nameContainer.setLayoutParams(new LayoutParams(LayoutParams.FILL_PARENT,
 LayoutParams.WRAP_CONTENT));
 nameContainer.setOrientation(LinearLayout.HORIZONTAL);

 TextView nameLbl = new TextView(this);

 nameLbl.setText("Name: ");
 nameContainer.addView(nameLbl);

15967ch04.indd 109 6/5/09 11:18:08 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 4 ■ BUILDING USer INterFaCeS aND USING CONtrOLS110

 TextView nameValueLbl = new TextView(this);
 nameValueLbl.setText("John Doe");

 nameContainer.addView(nameValueLbl);
 }

 private void createAddressContainer()
 {
 addressContainer = new LinearLayout(this);

 addressContainer.setLayoutParams(new LayoutParams(LayoutParams.FILL_PARENT,
 LayoutParams.WRAP_CONTENT));
 addressContainer.setOrientation(LinearLayout.VERTICAL);

 TextView addrLbl = new TextView(this);

 addrLbl.setText("Address:");

 TextView addrValueLbl = new TextView(this);

 addrValueLbl.setText("911 Hollywood Blvd");

 addressContainer.addView(addrLbl);
 addressContainer.addView(addrValueLbl);

 }

 private void createParentContainer()
 {
 parentContainer = new LinearLayout(this);

 parentContainer.setLayoutParams(new LayoutParams(LayoutParams.FILL_PARENT,
 LayoutParams.FILL_PARENT));
 parentContainer.setOrientation(LinearLayout.VERTICAL);

 parentContainer.addView(nameContainer);
 parentContainer.addView(addressContainer);
 }
}

As shown in Listing 4-1, the activity contains three LinearLayout objects. As we men-
tioned earlier, layout objects contain logic to position objects within a portion of the screen.
A LinearLayout, for example, knows how to lay out controls either vertically or horizontally.
Layout objects can contain any type of view—even other layouts.

The nameContainer object contains two TextView controls: one for the label Name: and
the other to hold the actual name (i.e., John Doe). The addressContainer also contains two
TextView controls. The difference between the two containers is that the nameContainer

15967ch04.indd 110 6/5/09 11:18:08 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 4 ■ BUILDING USer INterFaCeS aND USING CONtrOLS 111

is laid out horizontally and the addressContainer is laid out vertically. Both of these con-
tainers live within the parentContainer, which is the root view of the activity. After the
containers have been built, the activity sets the content of the view to the root view by call-
ing setContentView(parentContainer). When it comes time to render the user interface of
the activity, the root view is called to render itself. The root view then calls its children to
render themselves, and the child controls call their children, and so on, until the entire user
interface is rendered.

As shown in Listing 4-1, we have several LinearLayout controls. In fact, two of them are
laid out vertically and one is laid out horizontally. The nameContainer is laid out horizontally.
This means the two TextView controls appear side by side horizontally. The addressContainer
is laid out vertically, which means that the two TextView controls are stacked one on top of the
other. The parentContainer is also laid out vertically, which is why the nameContainer appears
above the addressContainer. Note a subtle difference between the two vertically laid-out
containers: addressContainer and parentContainer. parentContainer is set to take up the
entire width and height of the screen:

 parentContainer.setLayoutParams(new LayoutParams(LayoutParams.FILL_PARENT,
 LayoutParams.FILL_PARENT));

And addressContainer wraps its content vertically:

 addressContainer.setLayoutParams(new LayoutParams(LayoutParams.FILL_PARENT,
 LayoutParams.WRAP_CONTENT));

Now let’s build the same user interface in XML (see Listing 4-2). Recall from Chapter 3
that XML layout files are stored under the resources (/res/) directory within a folder called
layout. To try out this example, create an XML file named test.xml and place it under the
layout folder. Create a new activity and override its onCreate() method. In the onCreate()
method, call the base class’s onCreate() method and then call setContentView(R.layout.test).

Listing 4-2. Creating a User Interface Entirely in XML

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <!-- NAME CONTAINER -->
 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal" android:layout_width="fill_parent"
 android:layout_height="wrap_content">

 <TextView android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:text="Name:" />

 <TextView android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:text="John Doe" />

 </LinearLayout>

15967ch04.indd 111 6/5/09 11:18:08 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 4 ■ BUILDING USer INterFaCeS aND USING CONtrOLS112

 <!-- ADDRESS CONTAINER -->
 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="fill_parent"
 android:layout_height="wrap_content">

 <TextView android:layout_width="fill_parent"
 android:layout_height="wrap_content" android:text="Address:" />

 <TextView android:layout_width="fill_parent"
 android:layout_height="wrap_content" android:text="911 Hollywood Blvd." />
 </LinearLayout>

</LinearLayout>

The XML snippet shown in Listing 4-2, combined with a call to setContentView(R.layout.
test), will render the same user interface. The XML file is self-explanatory, but note that we
have three container views defined. The first LinearLayout is the equivalent of our parent con-
tainer. This container sets its orientation to vertical by setting the corresponding property like
this: android:orientation="vertical". The parent container contains two LinearLayout con-
tainers, which represent the nameContainer and addressContainer.

Listing 4-2 is a contrived example. Notably, its doesn’t make any sense to hard-code the
values of the TextView controls in the XML layout. Ideally, we should design our user interfaces
in XML and then reference the controls from code. This approach enables us to bind dynamic
data to the controls defined at design time. In fact, this is the recommended approach.

Listing 4-3 shows the same user interface with slightly different XML. This XML assigns
IDs to the TextView controls so that we can refer to them in code.

Listing 4-3. Creating a User Interface in XML with IDs

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <!-- NAME CONTAINER -->
 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal" android:layout_width="fill_parent"
 android:layout_height="wrap_content">

 <TextView android:id="@+id/nameText" android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:text="@+string/name_text" />

 <TextView android:id="@+id/nameValueText"
android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

 </LinearLayout>

15967ch04.indd 112 6/5/09 11:18:08 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 4 ■ BUILDING USer INterFaCeS aND USING CONtrOLS 113

 <!-- ADDRESS CONTAINER -->
 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="fill_parent"
 android:layout_height="wrap_content">

 <TextView android:id="@+id/addrText" android:layout_width="fill_parent"
 android:layout_height="wrap_content" android:text="@+string/addr_text" />

 <TextView android:id="@+id/addrValueText"
android:layout_width="fill_parent"
 android:layout_height="wrap_content" />
 </LinearLayout>

</LinearLayout>

The code in Listing 4-4 demonstrates how you can obtain references to the controls
defined in the XML to set their properties.

Listing 4-4. Referring to Controls in Resources at Runtime

 setContentView(R.layout.main);

TextView nameValue = (TextView)findViewById(R.id.nameValueText);
 nameValue.setText("John Doe");
 TextView addrValue = (TextView)findViewById(R.id.addrValueText);
 addrValue.setText("911 Hollywood Blvd.");

The code in Listing 4-4 is straightforward, but note that we load the resource (by calling
setContentView(R.layout.main)) before calling findViewById()—we cannot get references to
views if they have not been loaded yet.

Understanding Android’s Common Controls
We will now start our discussion of the common controls in the Android SDK. We’ll start with
text controls and then discuss buttons, check boxes, radio buttons, lists, grids, date and time
controls, and a map-view control. We will also talk about layout controls. Finally, we will con-
clude the chapter by showing you how to write your own custom controls.

Text Controls
Text controls are likely to be the first type of control that you’ll work with in Android. Android
has a complete, but not overwhelming, set of text controls. In this section, we are going to
discuss the TextView, EditText, AutoCompleteTextView, and MultiCompleteTextView controls.
Figure 4-2 shows the controls in action.

15967ch04.indd 113 6/5/09 11:18:08 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 4 ■ BUILDING USer INterFaCeS aND USING CONtrOLS114

Figure 4-2. Text controls in Android

textView
The TextView control knows how to display text but does not allow editing. This might lead
you to conclude that the control is essentially a dummy label. Not true. The TextView control
has a few interesting properties that make it very handy. If you know that the content of the
TextView is going to contain a web URL, for example, you can set the autoLink property to web
and the control will find and highlight the URL. Moreover, when the user clicks the TextView,
the system will take care of launching the browser with the URL.

Actually, a more interesting use of TextView comes via the android.text.util.Linkify
class (see Listing 4-5).

Listing 4-5. Using the Linkify Class with a TextView

TextView tv =(TextView)this.findViewById(R.id.cctvex);
tv.setText("Please visit my website, http://www.sayedhashimi.com
or email me at sayed@sayedhashimi.com.");
Linkify.addLinks(tv, Linkify.ALL);

As shown, you can pass a TextView to the Linkify class to find and add links to the con-
tent of the TextView. In our example, we call the addLinks() method of Linkify, passing the
TextView and a mask indicating what types of links that Linkify should look for. Linkify can
create links for text that looks like a phone number, an e-mail address, a web URL, or a map
address. Passing Linkify.ALL tells the class to “linkify” all of these link types. Clicking a link
will cause the default intent to be called for that action. For example, clicking a web URL will
launch the browser with the URL. Clicking a phone number will launch the phone dialer, and

15967ch04.indd 114 6/5/09 11:18:08 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 4 ■ BUILDING USer INterFaCeS aND USING CONtrOLS 115

so on. The Linkify class can perform this work right out of the box. You can also have the class
linkify other content (such as a name) by giving it a regular expression along with the content-
provider URI.

edittext
The EditText control is a subclass of TextView. As suggested by the name, the EditText control
allows for text editing. EditText is not as powerful as the text-editing controls that you find in
JFC, for example, but users of Android-based devices probably won’t type documents—they’ll
type a couple paragraphs at most. Therefore, the class has limited but appropriate function-
ality. For example, you can set the autoText property to have the control correct common
misspellings. You can use the capitalize property to have the control capitalize words, the
beginning of sentences, and so on. You can set the phoneNumber property if you need to accept
a phone number. You can also set the password property if you need a password field.

The default behavior of the EditText control is to display text on one line and expand as
needed. In other words, if the user types past the first line, another line will appear, and so on.
You can, however, force the user to a single line by setting the singleLine property to true. In
this case, the user will have to continue typing on the same line.

Software programming for mobile devices is all about helping the user make a decision
quickly. Thus, a common task is to highlight or style a portion of the EditText’s content. You
can do this statically or dynamically. Statically, you can apply markup directly to the strings in
your string resources (<string name="styledText"><i>Static</i> style in an EditText.
</string>) and then reference it in your XML or from code. Note that you can use only the fol-
lowing HTML tags with string resources: <i>, , and <u>.

Styling an EditText control’s content programmatically requires a little additional work
but allows for much more flexibility (see Listing 4-6).

Listing 4-6. Applying Styles to the Content of an EditText Dynamically

EditText et =(EditText)this.findViewById(R.id.cctvex5);
et.setText("Styling the content of an editText dynamically");
Spannable spn = et.getText();
spn.setSpan(new BackgroundColorSpan(Color.RED), 0, 7,
Spannable.SPAN_EXCLUSIVE_EXCLUSIVE);
spn.setSpan(new StyleSpan(android.graphics.Typeface.BOLD_ITALIC)
, 0, 7, Spannable.SPAN_EXCLUSIVE_EXCLUSIVE);

As shown in Listing 4-6, you can get the content of the EditText (as a Spannable object)
and then set styles to portions of the text. The code in the listing sets the text styling to bold
and italics and sets the background to red. Of course, you are not limited to bold, italics, and
underline as before.

autoCompletetextView
The AutoCompleteTextView control is a TextView with auto-complete functionality. In other
words, as the user types in the TextView, the control can display suggestions for the user to
select. Listing 4-7 demonstrates the AutoCompleteTextView control.

15967ch04.indd 115 6/5/09 11:18:08 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 4 ■ BUILDING USer INterFaCeS aND USING CONtrOLS116

Listing 4-7. Using an AutoCompleteTextView Control

AutoCompleteTextView actv = (AutoCompleteTextView) this.findViewById(R.id.ccactv);

ArrayAdapter<String> aa = new ArrayAdapter<String>(this,
 android.R.layout.simple_dropdown_item_1line,
new String[] {"English", "Hebrew", "Hindi", "Spanish", "German","Greek" });

actv.setAdapter(aa);

The AutoCompleteTextView control shown in Listing 4-7 suggests a language to the user.
For example, if the user types en, the control suggests English. If the user types gr, the control
recommends Greek, and so on.

If you have used a suggestion control, or a similar auto-complete control, then you
know that controls like this have two parts: a text-view control and a control that displays the
suggestion(s). That’s the general concept. To use a control like this, you have to create the con-
trol, create the list of suggestions, tell the control the list of suggestions, and possibly tell the
control how to display the suggestions. Alternatively, you could create a second control for the
suggestions and then associate the two controls.

Android has made this simple, as is evident from Listing 4-7. To use an
AutoCompleteTextView, you can define the control in your layout file and then reference it
in your activity. You then create an adapter class that holds the suggestions and define the
ID of the control that will show the suggestion (in this case, a simple list item). In Listing 4-7,
the second parameter to the ArrayAdapter tells the adapter to use a simple list item to show
the suggestion. The final step is to associate the adapter with the AutoCompleteTextView,
which you do using the setAdapter() method.

MultiautoCompletetextView
If you have played with the AutoCompleteTextView control, then you know that the control
offers suggestions only for the entire text in the text view. In other words, if you type a sen-
tence, you don’t get suggestions for each word. That’s where MultiAutoCompleteTextView
comes in. You can use the MultiAutoCompleteTextView to provide suggestions as the user
types. For example, Figure 4-2 shows that the user typed the word English followed by a
comma, and then Hi, at which point the control suggested Hindi. If the user were to continue,
the control would offer additional suggestions.

Using the MultiAutoCompleteTextView is like using the AutoCompleteTextView. The dif-
ference is that you have to tell the control where to start suggesting again. For example, in
Figure 4-2, you can see that the control can offer suggestions at the beginning of the sentence
and after it sees a comma. The MultiAutoCompleteTextView control requires that you give it a
tokenizer that can parse the sentence and tell it whether to start suggesting again. Listing 4-8
demonstrates using the MultiAutoCompleteTextView control.

15967ch04.indd 116 6/5/09 11:18:08 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 4 ■ BUILDING USer INterFaCeS aND USING CONtrOLS 117

Listing 4-8. Using the MultiAutoCompleteTextView Control

MultiAutoCompleteTextView mactv = (MultiAutoCompleteTextView) this
 .findViewById(R.id.ccmactv);
ArrayAdapter<String> aa2 = new ArrayAdapter<String>(this,
 android.R.layout.simple_dropdown_item_1line,
new String[] {"English", "Hebrew", "Hindi", "Spanish", "German","Greek" });

mactv.setAdapter(aa2);

mactv.setTokenizer(new MultiAutoCompleteTextView.CommaTokenizer());

The only significant difference between Listing 4-7 and Listing 4-8 is the use of
MultiAutoCompleteTextView and the call to the setTokenizer() method.

Button Controls
Buttons are common in any widget toolkit, and Android is no exception. Android offers the
typical set of buttons as well as a few extras. In this section, we will discuss three types of but-
ton controls: the basic button, the image button, and the toggle button. Figure 4-3 shows a UI
with these controls. The button at the top is the basic button, the middle button is an image
button, and the last one is a toggle button.

Figure 4-3. Android button controls

Let’s get started with the basic button.

the Button Control
The basic button class in Android is android.widget.Button. There’s not much to this type of
button, other than how you use it to handle click events (see Listing 4-9).

Listing 4-9. Handling Click Events on a Button

<Button android:id="@+id/ccbtn1"
 android:text="@+string/basicBtnLabel"
 android:typeface="serif" android:textStyle="bold"
android:layout_width="fill_parent"
 android:layout_height="wrap_content" />

15967ch04.indd 117 6/5/09 11:18:08 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 4 ■ BUILDING USer INterFaCeS aND USING CONtrOLS118

Button btn = (Button)this.findViewById(R.id.ccbtn1);
btn.setOnClickListener(new OnClickListener()
{
 public void onClick(View v)
 {
 Intent intent = getButtonIntent();
 intent.setAction("some intent data");
 setResult(RESULT_OK, intent);
 finish();
 }
});

Listing 4-9 shows how to register for a button-click event. You register for the on-click
event by calling the setOnClickListener method with an OnClickListener. In Listing 4-9, an
anonymous listener is created on the fly to handle click events for btn. When the button is
clicked, the OnClick method of the listener is called.

the ImageButton Control
Android provides an image button via android.widget.ImageButton. Using an image button is
similar to using the basic button (see Listing 4-10).

Listing 4-10. Using an ImageButton

<ImageButton android:id="@+id/imageBtn"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
/>

ImageButton btn = (ImageButton)this.findViewById(R.id.imageBtn);
btn.setImageResource(R.drawable.icon);

You can set the button’s image dynamically by calling setImageResource or modifying the
XML layout file (by setting the android:src property to the image ID), as shown in Listing 4-11.

Listing 4-11. Setting the ImageButton Image via XML

<ImageButton android:id="@+id/imageBtn" android:src="@drawable/btnImage"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
/>

the toggleButton Control
The ToggleButton, like a check box or a radio button, is a two-state button. This button can
be in either the On state or the Off state. As shown in Figure 4-3, the ToggleButton’s default
behavior is to show a green bar when in the On state, and a grayed-out bar when in the Off
state. Moreover, the default behavior also sets the button’s text to “On” when it’s in the On
state and “Off” when it’s in the Off state.

15967ch04.indd 118 6/5/09 11:18:08 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 4 ■ BUILDING USer INterFaCeS aND USING CONtrOLS 119

Listing 4-12 shows an example.

Listing 4-12. The Android ToggleButton

<ToggleButton android:id="@+id/cctglBtn" android:layout_
width="wrap_content" android:layout_height="wrap_content"
android:text="Toggle Button"/>

You can modify the text for the ToggleButton if “On”/”Off” is not appropriate for your
application. For example, if you have a background process that you want to start and stop via
a ToggleButton, you could set the button’s text to “Run” and “Stop” by using android:textOn
and android:textOff properties (see Listing 4-13).

Listing 4-13. Setting the ToggleButton’s Label

<ToggleButton android:id="@+id/cctglBtn"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
android:textOn="Run" android:textOff="Stop"
android:text="Toggle Button"/>

the CheckBox Control
A check-box control plays a part in virtually all widget toolkits. HTML, JFC, and JSF all support
the concept of a check box. The check-box control is a two-state button that allows the user to
toggle its state.

In Android, you can create a check box by creating an instance of android.widget.
CheckBox. See Listing 4-14 and Figure 4-4.

Listing 4-14. Creating Check Boxes

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="fill_parent"
 android:layout_height="fill_parent">

<CheckBox android:text="Chicken"
android:layout_width="wrap_content" android:layout_height="wrap_content" />

<CheckBox android:text="Fish"
android:layout_width="wrap_content" android:layout_height="wrap_content" />

<CheckBox android:text="Steak"
android:layout_width="wrap_content" android:layout_height="wrap_content" />

</LinearLayout>

15967ch04.indd 119 6/5/09 11:18:09 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 4 ■ BUILDING USer INterFaCeS aND USING CONtrOLS120

Figure 4-4. Using the CheckBox control

You manage the state of a check box by calling setChecked() or toggle(). You can obtain
the state by calling isChecked().

If you need to implement specific logic when a check box is checked or unchecked,
you can register for the on-checked event by calling setOnCheckedChangeListener() with an
implementation of the OnCheckedChangeListener interface. You’ll then have to implement
the onCheckedChanged() method, which will be called when the check box is checked or
unchecked.

the radioButton Control
Radio-button controls are an integral part of any UI toolkit. A radio button gives the user
several choices and forces her to select a single item. To enforce this single-selection model,
radio buttons generally belong to a group and each group is forced to have only one item
selected at a time.

To create a group of radio buttons in Android, first create a RadioGroup and then populate
the group with radio buttons. Listing 4-15 and Figure 4-5 show an example.

Listing 4-15. Using Android Radio-Button Widgets

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="fill_parent"
 android:layout_height="fill_parent">

<RadioGroup android:layout_width="wrap_content"
 android:layout_height="wrap_content">

<RadioButton android:id="@+id/chRBtn"
 android:text="Chicken" android:layout_width="wrap_content"
 android:layout_height="wrap_content"/>

<RadioButton android:id="@+id/fishRBtn" android:text="Fish"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"/>

<RadioButton android:id="@+id/stkRBtn" android:text="Steak"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"/>

15967ch04.indd 120 6/5/09 11:18:09 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 4 ■ BUILDING USer INterFaCeS aND USING CONtrOLS 121

</RadioGroup>

</LinearLayout>

In Android, you implement a radio group using android.widget.RadioGroup and a radio
button using android.widget.RadioButton.

Figure 4-5. Using radio buttons

Note that the radio buttons within the radio group are, by default, unchecked to begin
with. To set one of the radio buttons to the checked state, you can obtain a reference to the
radio button programmatically and call setChecked():

RadioButton rbtn = (RadioButton)this.findViewById(R.id.stkRBtn);
rbtn.setChecked(true);

You can also use the toggle() method to toggle the state of the radio button. As with
the CheckBox control, you will be notified of on-checked or on-unchecked events if you call
the setOnCheckedChangeListener() with an implementation of the OnCheckedChangeListener
interface.

Realize that RadioGroup can also contain views other than the radio button. For example,
Listing 4-16 adds a TextView after the last radio button. Also note that a radio button lies out-
side the radio group.

Listing 4-16. A Radio Group with More Than Just Radio Buttons

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">

<RadioButton android:id="@+id/anotherRadBtn"
 android:text="Outside"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"/>
<RadioGroup android:id="@+id/rdGrp"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content">

15967ch04.indd 121 6/5/09 11:18:09 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 4 ■ BUILDING USer INterFaCeS aND USING CONtrOLS122

<RadioButton android:id="@+id/chRBtn"
 android:text="Chicken"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"/>
<RadioButton android:id="@+id/fishRBtn"
 android:text="Fish"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"/>
<RadioButton android:id="@+id/stkRBtn"
 android:text="Steak"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"/>

<TextView android:text="My Favorite"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"/>
</RadioGroup>

</LinearLayout>

Listing 4-16 shows that you can have non-RadioButton controls inside a radio group.
Moreover, you should know that the radio group can enforce single-selection only on the radio
buttons within its own container. That is, the radio button with ID anotherRadBtn will not be
affected by the radio group shown in Listing 4-16 because it is not one of the group’s children.

Also know that you can manipulate the RadioGroup programmatically. For example, you
can obtain a reference to a radio group programmatically and add a radio button (or other
type of control):

RadioGroup rdgrp = (RadioGroup)findViewById(R.id.rdGrp);
RadioButton newRadioBtn = new RadioButton(this);
newRadioBtn.setText("Pork");
rdgrp.addView(newRadioBtn);

List Controls
The Android SDK offers several list controls. Figure 4-6 shows a ListView control that we’ll dis-
cuss in this section.

The ListView control displays a list of items vertically. You generally use a ListView
by writing a new activity that extends android.app.ListActivity. ListActivity contains a
ListView, and you set the data for the ListView by calling the setListAdapter method.
Listing 4-17 demonstrates this.

15967ch04.indd 122 6/5/09 11:18:09 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 4 ■ BUILDING USer INterFaCeS aND USING CONtrOLS 123

Figure 4-6. Using the ListView control

Listing 4-17. Adding Items to a ListView

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content">

<CheckBox xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/row_chbox"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
/>

<TextView android:id="@+id/row_tv" android:layout_width="wrap_content"
 android:layout_height="wrap_content"
/>
</LinearLayout>

public class ListDemoActivity extends ListActivity
{
 private SimpleCursorAdapter adapter;

15967ch04.indd 123 6/5/09 11:18:09 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 4 ■ BUILDING USer INterFaCeS aND USING CONtrOLS124

 @Override
 protected void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 Cursor c = getContentResolver().query(People.CONTENT_URI,
 null, null, null, null);
 startManagingCursor(c);
 String[] cols = new String[]{People.NAME};
 int[] names = new int[]{R.id.row_tv};
 adapter = new SimpleCursorAdapter(this,R.layout.lists,c,cols,names);
 this.setListAdapter(adapter);
 }
}

Listing 4-17 creates a ListView control populated with the list of contacts on the device.
To the right of each contact is a check-box control. As we stated earlier, the usage pattern is to
extend ListActivity and then set the list’s adapter by calling setListAdapter on the activity. In
our example, we query the device for the list of contacts and then create a projection to select
only the names of the contacts—a projection defines the columns that we are interested in.
We then map a name to a TextView control. Finally, we create a cursor adapter and set the list’s
adapter. The adapter class has the smarts to take the rows in the data source and pull out the
name of each contact to populate the user interface.

You’ll notice that the onCreate method does not set the content view of the activity.
Instead, because the base class ListActivity contains a ListView already, it just needs to pro-
vide the data for the ListView. If you want additional controls outside the ListView, you can
override the ListView referenced in ListActivity in your layout file and add the desired con-
trols. For example, you could add a button below the ListView in the UI to submit an action on
the selected items, as shown in Figure 4-7.

Figure 4-7. An additional button that lets the user submit the selected item(s)

15967ch04.indd 124 6/5/09 11:18:09 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 4 ■ BUILDING USer INterFaCeS aND USING CONtrOLS 125

The layout XML file for this example is broken up into two files. The first contains the
user interface definition of the activity—the ListView and the button (see Figure 4-7 and
Listing 4-18).

Listing 4-18. Overriding the ListView Referenced by ListActivity

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">

 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">

 <ListView android:id="@android:id/list"
 android:layout_width="fill_parent"
 android:layout_height="0dip"
 android:layout_weight="1"
 android:stackFromBottom="true"
 android:transcriptMode="normal"/>

 </LinearLayout>

 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">

 <Button android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:text="Submit Selection" />

 </LinearLayout>
</LinearLayout>

The second file contains the definition of the items in the list, which is the same as the
definition in Listing 4-17. The activity implementation would then look like Listing 4-19.

15967ch04.indd 125 6/5/09 11:18:09 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 4 ■ BUILDING USer INterFaCeS aND USING CONtrOLS126

Listing 4-19. Setting the Content View of the ListActivity

public class ListDemoActivity extends ListActivity
{
 private SimpleCursorAdapter adapter;

 @Override
 protected void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.lists);

 Cursor c = getContentResolver().query(People.CONTENT_URI,
null, null, null, null);
 startManagingCursor(c);

 String[] cols = new String[]{People.NAME};
 int[] names = new int[]{R.id.row_tv};
 adapter = new SimpleCursorAdapter(this,R.layout.list_item,c,cols,names);
 this.setListAdapter(adapter);
 }
}

Listing 4-19 shows that the activity calls setContentView to set the user interface for the
activity. It also sets the layout file for the items in the list, when it creates the adapter (we’ll talk
more about adapters in the “Understanding Adapters” section toward the end of this chapter).

Grid Controls
Most widget toolkits offer one or more grid-based controls. Android has a GridView control
that can display data in the form of a grid. Note that although we use the term “data” here, the
contents of the grid can be text, images, and so on.

The GridView control displays information in a grid. The usage pattern for the GridView is
to define the grid in the XML layout (see Listing 4-20), and then bind the data to the grid using
an android.widget.ListAdapter.

Listing 4-20. Definition of a GridView in an XML Layout and Associated Java Code

<GridView xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/dataGrid"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:padding="10px"
 android:verticalSpacing="10px"

 android:horizontalSpacing="10px"
 android:numColumns="auto_fit"
 android:columnWidth="100px"
 android:stretchMode="columnWidth"

15967ch04.indd 126 6/5/09 11:18:09 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 4 ■ BUILDING USer INterFaCeS aND USING CONtrOLS 127

 android:gravity="center"
 />

 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.gridview);
 GridView gv = (GridView)this.findViewById(R.id.dataGrid);

 Cursor c = getContentResolver().query(People.CONTENT_URI,
 null, null, null, null);
 startManagingCursor(c);

 String[] cols = new String[]{People.NAME};
 int[] names = new int[]{R.id.grid_entry};

SimpleCursorAdapter adapter = new SimpleCursorAdapter(
 this,R.layout.grid_item,c,cols,names);

 gv.setAdapter(adapter);

 }

Listing 4-20 defines a simple GridView in an XML layout. The grid is then loaded into the
activity’s content view. The generated UI is shown in Figure 4-8.

Figure 4-8. A GridView populated with contact information

The grid shown in Figure 4-8 displays the names of the contacts on the device. We have
decided to show a TextView with the contact names, but you could easily generate a grid filled
with images and the like.

The interesting thing about the GridView is that the adapter used by the grid is a
ListAdapter. Lists are generally one-dimensional whereas grids are two-dimensional. What
we can conclude, then, is that the grid actually displays list-oriented data. In fact, if you call
getSelection(), you get back an integer representing the index of the selected item. Like-
wise, to set a selection in the grid, you call setSelection() with the index of the item you
want selected.

15967ch04.indd 127 6/5/09 11:18:09 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 4 ■ BUILDING USer INterFaCeS aND USING CONtrOLS128

Date and Time Controls
Date and time controls are quite common in many widget toolkits. Android offers several date-
and time-based controls, some of which we’ll discuss in this section. Specifically, we are going
to introduce the DatePicker, the TimePicker, the AnalogClock, and the DigitalClock controls.

the Datepicker and timepicker Controls
As the names suggest, you use the DatePicker control to select a date and the TimePicker con-
trol to pick a time. Listing 4-21 and Figure 4-9 show examples of these controls.

Listing 4-21. The DatePicker and TimePicker Controls in XML

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <DatePicker android:id="@+id/datePicker"
 android:layout_width="wrap_content" android:layout_height="wrap_content" />

 <TimePicker android:id="@+id/timePicker"
 android:layout_width="wrap_content" android:layout_height="wrap_content" />

</LinearLayout>

Figure 4-9. The DatePicker and TimePicker UIs

If you look at the XML layout, you can see that defining these controls is quite easy. The
user interface, however, looks a bit overdone. Both controls seem a bit oversized, but for a
mobile device, you can’t argue with the look and feel.

15967ch04.indd 128 6/5/09 11:18:09 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 4 ■ BUILDING USer INterFaCeS aND USING CONtrOLS 129

As with any other control in the Android toolkit, you can access the controls program-
matically to initialize them or to retrieve data from them. For example, you can initialize these
controls as shown in Listing 4-22.

Listing 4-22. Initializing the DatePicker and TimePicker with Date and Time, Respectively

protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.datetime);

 DatePicker dp = (DatePicker)this.findViewById(R.id.datePicker);
 dp.init(2008, 11, 10, null);

 TimePicker tp = (TimePicker)this.findViewById(R.id.timePicker);
 tp.setIs24HourView(true);
 tp.setCurrentHour(new Integer(10));
 tp.setCurrentMinute(new Integer(10));
}

Listing 4-22 sets the date on the DatePicker to November 10, 2008. Similarly, the number
of hours and minutes is set to 10. Note also that the control supports 24-hour view.

Finally, note that Android offers versions of these controls as modal windows, such as
DatePickerDialog and TimePickerDialog. These controls are useful if you want to display the
control to the user and force the user to make a selection.

the analogClock and DigitalClock Controls
Android also offers an AnalogClock and a DigitalClock (see Figure 4-10).

Figure 4-10. Using the AnalogClock and DigitalClock

As shown, the analog clock in Android is a two-handed clock, one hand for the hour
indicator and the other hand for the minute indicator. The digital clock supports seconds in
addition to hours and minutes.

15967ch04.indd 129 6/5/09 11:18:09 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 4 ■ BUILDING USer INterFaCeS aND USING CONtrOLS130

These two controls are not that interesting because they don’t let you modify the date
or time. In other words, they are merely clocks whose only capability is to display the cur-
rent time. Thus, if you want to change the date or time, you’ll need to stick to the DatePicker/
TimePicker or DatePickerDialog/TimePickerDialog.

Other Interesting Controls in Android
The controls that we have discussed so far are fundamental to any Android application. In
addition to these, Android also offers a few other interesting controls. We’ll briefly introduce
these other controls in this section.

The MapView Control
The com.google.android.maps.MapView control can display a map. You can instantiate this
control either via XML layout or code, but the activity that uses it must extend MapActivity.
MapActivity takes care of multithreading requests to load a map, perform caching, and so on.

Listing 4-23 shows an example instantiation of a MapView.

Listing 4-23. Creating a MapView Control via XML Layout

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <com.google.android.maps.MapView
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:enabled="true"
 android:clickable="true"
 android:apiKey="myAPIKey"
 />

</LinearLayout>

As shown, the interesting thing about using the MapView is that you’ll have to first obtain a
mapping-API key. To get a key, you’ll have to register with Google at

http://code.google.com/android/toolbox/apis/mapkey.html

After you obtain an API key, you can then instantiate a MapView either programmatically
or via XML. In XML, you set the android:apiKey property. In code, you’ll have to pass the key
to the MapView constructor. Note that we’ll discuss the MapView control in detail in Chapter 7,
when we discuss location-based services.

The Gallery Control
The Gallery control is a horizontally scrollable list control that always focuses at the center of
the list. This control generally functions as a photo gallery in touch mode. You can instantiate
a Gallery either via XML layout or code:

15967ch04.indd 130 6/5/09 11:18:09 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 4 ■ BUILDING USer INterFaCeS aND USING CONtrOLS 131

<Gallery
 android:id="@+id/galleryCtrl"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
/>

Using the Gallery control is similar to using a list control. That is to say, you get a refer-
ence to the gallery, then call the setAdapter() method to populate data, then register for
on-selected events.

This concludes our discussion of the Android control set. As we mentioned in the begin-
ning of the chapter, building user interfaces in Android requires you to master two things: the
control set and the layout managers. In the next section, we are going to discuss the Android
layout managers.

Understanding Layout Managers
Like Swing, Android offers a collection of view classes that act as containers for views. These
container classes are called layouts (or layout managers), and each implements a specific
strategy to manage the size and position of its children. For example, the LinearLayout class
lays out its children either horizontally or vertically, one after the other.

The layout managers that ship with the Android SDK are defined in Table 4-2.

Table 4-2. Android Layout Managers

Layout Manager Description

LinearLayout Organizes its children either horizontally or vertically.

TableLayout Organizes its children in tabular form.

RelativeLayout Organizes its children relative to one another or to the parent.

AbsoluteLayout Positions children based on exact coordinates.

FrameLayout Allows you to dynamically change the control(s) in the layout.

We will discuss these layout managers in the sections that follow.

The LinearLayout Layout Manager
The LinearLayout is the most popular layout. This layout manager organizes its children either
horizontally or vertically based on the value of the orientation property. Listing 4-24 shows a
LinearLayout with horizontal configuration.

Listing 4-24. A LinearLayout with Horizontal Configuration

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">

 <!-- add children here-->
</LinearLayout>

15967ch04.indd 131 6/5/09 11:18:09 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 4 ■ BUILDING USer INterFaCeS aND USING CONtrOLS132

You can create a vertically oriented LinearLayout by setting the value of orientation to
vertical.

Understanding Weight and Gravity
The orientation attribute is the first important attribute recognized by the LinearLayout lay-
out manager. Other important properties that can affect size and position of child controls
include weight and gravity. You use weight to assign size importance to a control relative to
the other controls in the container. Suppose a container has three controls: one has a weight
of 1 (the highest possible value), while the others have a weight of 0. In this case, the control
whose weight equals 1 will consume the empty space in the container. Gravity is essentially
alignment. For example, if you want to align a label’s text to the right, you would set its gravity
to right.

■Note Layout managers extend android.widget.ViewGroup, as do many control-based container
classes such as ListView. Although the layout managers and control-based containers extend the same
class, the layout-manager classes strictly deal with the sizing and position of controls and not user interac-
tion with child controls. For example, compare the LinearLayout to the ListView control. On the screen,
they look similar in that both can organize children vertically. But the ListView control provides APIs for
the user to make selections, while the LinearLayout does not. In other words, the control-based container
(ListView) supports user interaction with the items in the container, whereas the layout manager
(LinearLayout) addresses sizing and positioning only.

Now let’s look at an example involving the weight and gravity properties (see Figure 4-11).

Figure 4-11. Using the LinearLayout layout manager

15967ch04.indd 132 6/5/09 11:18:10 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 4 ■ BUILDING USer INterFaCeS aND USING CONtrOLS 133

Figure 4-11 shows three user interfaces that utilize LinearLayout, with different weight
and gravity settings. The UI on the left uses the default settings for weight and gravity. The
XML layout for this first user interface is shown in Listing 4-25.

Listing 4-25. Three Text Fields Arranged Vertically in a LinearLayout, Using Default Values for
Weight and Gravity

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <EditText android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="one"/>
 <EditText android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="two"/>
 <EditText android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="three"/>
</LinearLayout>

The user interface in the center of Figure 4-11 uses the default value for weight but sets
android:gravity for the controls in the container to left, center, and right, respectively. The
last example sets the android:layout_weight attribute of the center component to 1.0 and
leaves the others to the default value of 0.0 (see Listing 4-26). By setting the weight attribute to
1.0 for the middle component and leaving the weight attributes for the other two components
at 0.0, we are specifying that the center component should take up all the remaining white
space in the container and that the other two components should remain at their ideal size.

Similarly, if you want two of the three controls in the container to share the remaining
white space among them, you would set the weight to 1.0 for those two and leave the third one
at 0.0. Finally, if you want the three components to share the space equally, you’d set all of
their weight values to 1.0. Doing this would expand each text field equally.

Listing 4-26. LinearLayout with Weight Configurations

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <EditText android:layout_width="fill_parent" android:layout_weight="1.0"
 android:layout_height="wrap_content" android:text="one"
 android:gravity="left"/>

 <EditText android:layout_width="fill_parent"
 android:layout_height="wrap_content" android:text="two"
 android:gravity="center" android:layout_weight="1.0"/>

15967ch04.indd 133 6/5/09 11:18:10 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 4 ■ BUILDING USer INterFaCeS aND USING CONtrOLS134

 <EditText android:layout_width="fill_parent" android:layout_weight="1.0"
 android:layout_height="wrap_content" android:text="three"
 android:gravity="right"
 />
</LinearLayout>

android:gravity vs. android:layout_gravity
Note that Android defines two similar gravity attributes: android:gravity and android:
layout_gravity. Here’s the difference: android:gravity is a setting used by the view, whereas
android:layout_gravity is used by the container (android.view.ViewGroup). For example, you
can set android:gravity to center to have the text in the EditText centered within the control.
Similarly, you can align an EditText to the far right of a LinearLayout (the container) by setting
android:layout_gravity="right". See Figure 4-12 and Listing 4-27.

Figure 4-12. Applying gravity settings

Listing 4-27. Understanding the Difference Between android:gravity and android:layout_gravity

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <EditText android:layout_width="wrap_content" android:gravity="center"
 android:layout_height="wrap_content" android:text="one"
 android:layout_gravity="right"/>
</LinearLayout>

As shown in Figure 4-12, the text is centered within the EditText and the EditText itself is
aligned to the right of the LinearLayout.

The TableLayout Layout Manager
The TableLayout layout manager is an extension of LinearLayout. This layout manager struc-
tures its child controls into rows and columns. Listing 4-28 shows an example.

15967ch04.indd 134 6/5/09 11:18:10 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 4 ■ BUILDING USer INterFaCeS aND USING CONtrOLS 135

Listing 4-28. A Simple TableLayout

<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <TableRow>
 <TextView android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:text="First Name:"/>

 <EditText android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:text="Barack"/>

 </TableRow>

 <TableRow>
 <TextView android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:text="Last Name:"/>

 <EditText android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:text="Obama"/>

 </TableRow>

</TableLayout>

To use a TableLayout, you create an instance of TableLayout and then place TableRow ele-
ments within it. TableRow elements then contain the controls of the table. The user interface
for Listing 4-28 is shown in Figure 4-13.

Figure 4-13. The TableLayout layout manager

Because the contents of a TableLayout are defined by rows as opposed to columns,
Android determines the number of columns in the table by finding the row with the most cells.
For example, Listing 4-29 creates a table with two rows where one row has two cells and the
other has three cells (see Figure 4-14). In this case, Android creates a table with two rows and
three columns.

15967ch04.indd 135 6/5/09 11:18:10 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 4 ■ BUILDING USer INterFaCeS aND USING CONtrOLS136

Listing 4-29. An Irregular Table Definition

<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <TableRow>
 <TextView android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:text="First Name:"/>

 <EditText android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:text="Barack"/>

 </TableRow>

 <TableRow>
 <TextView android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:text="Last Name:"/>

 <EditText android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:text="Hussein"/>

 <EditText android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:text="Obama"/>

 </TableRow>

</TableLayout>

Figure 4-14. An irregular TableLayout

Realize that we have a table with two rows, each of which has three columns. The last col-
umn of the first row is an empty cell.

In Listings 4-28 and 4-29, we populated the TableLayout with TableRow elements. Although
this is the usual pattern, you can place any android.widget.View as a child of the table. For
example, Listing 4-30 creates a table where the first row is an EditText (also see Figure 4-15).

15967ch04.indd 136 6/5/09 11:18:10 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 4 ■ BUILDING USer INterFaCeS aND USING CONtrOLS 137

Listing 4-30. Using an EditText Instead of a TableRow

<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:stretchColumns="0,1,2">

<EditText
 android:text="Full Name:"/>

 <TableRow>
 <TextView android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:text="Barack"/>

 <TextView android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:text="Hussein"/>

 <TextView android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:text="Obama"/>

 </TableRow>

</TableLayout>

Figure 4-15. An EditText as a child of a TableLayout

The user interface for Listing 4-30 is shown in Figure 4-15. Notice that the EditText takes
up the entire width of the screen, even though we have not specified this in the XML layout.
That’s because children of TableLayout always span the entire row. In other words, children of
TableLayout cannot specify android:layout_width="wrap_content"—they are forced to accept
fill_parent. They can, however, set android:layout_height.

Because the content of a table is not always known at design time, TableLayout offers
several attributes that can help you control the layout of a table. For example, Listing 4-30 sets
the android:stretchColumns property on the TableLayout to "0,1,2". This gives a hint to the
TableLayout that columns 0, 1, and 2 can be stretched if required, based on the contents of the
table.

Similarly, you can set android:shrinkColumns to wrap the content of a column or columns
if other columns require more space. You can also set android:collapseColumns to make col-
umns invisible. Note that columns are identified with a zero-based indexing scheme.

TableLayout also offers android:layout_span. You can use this property to have a cell span
multiple columns. This field is similar to the HTML colspan property.

15967ch04.indd 137 6/5/09 11:18:10 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 4 ■ BUILDING USer INterFaCeS aND USING CONtrOLS138

At times, you might also need to provide spacing within the contents of a cell or a control.
The Android SDK supports this via android:padding and its siblings. android:padding lets you
control the space between a view’s outer boundary and its content (see Listing 4-31).

Listing 4-31. Using android:padding

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <EditText android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:text="one"
 android:padding="40px" />
</LinearLayout>

Listing 4-31 sets the padding to 40px. This creates 40 pixels of white space between the
EditText control’s outer boundary and the text displayed within it. Figure 4-16 shows the same
EditText with two different padding values. The UI on the left does not set any padding, while
the one on the right sets android:padding="40px".

Figure 4-16. Utilizing padding

android:padding sets the padding for all sides: left, right, top, and bottom. You can
control the padding for each side by using android:leftPadding, android:rightPadding,
android:topPadding, and android:bottomPadding.

Android also defines android:layout_margin, which is similar to android:padding. In fact,
android:padding/android:layout_margin is analogous to android:gravity/android:layout_
gravity. That is, one is for a view, while the other is for a container.

Finally, the padding value is always set as a dimension type. Android supports the follow-
ing dimension types:

	 •	 Pixels: Defined as px. This dimension represents physical pixels on the screen.

	 •	 Inches: Defined as in.

	 •	 Millimeters: Defined as mm.

	 •	 Device-independent pixels: Defined as dip or dp. This dimension type uses a 160-dp
screen as a frame of reference, and then maps that to the actual screen. For example, a
screen with a 160-pixel width would map 1 dip to 1 pixel.

	 •	 Scaled pixels: Defined as sp. Generally used with font types. This dimension type will
take the user’s preferences and font size into account to determine actual size.

15967ch04.indd 138 6/5/09 11:18:10 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 4 ■ BUILDING USer INterFaCeS aND USING CONtrOLS 139

Note that the preceding dimension types are not specific to padding—any Android field
that accepts a dimension value (such as android:layout_width or android:layout_height) can
accept these types.

The RelativeLayout Layout Manager
Another interesting layout manager is the RelativeLayout. As the name suggests, this lay-
out manager implements a policy where the controls in the container are laid out relative to
either the container or another control in the container. Listing 4-32 and Figure 4-17 show an
example.

Listing 4-32. Using a RelativeLayout Layout Manager

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">

<TextView android:id="@+id/userNameLbl"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Username: "
 android:layout_alignParentTop="true" />

<EditText android:id="@+id/userNameText"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_below="@id/userNameLbl" />

<TextView android:id="@+id/pwdLbl"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_below="@id/userNameText"
 android:text="Password: " />

<EditText android:id="@+id/pwdText"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_below="@id/pwdLbl"
 />

<TextView android:id="@+id/pwdHintLbl"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_below="@id/pwdText"
 android:text="Password Criteria... " />

15967ch04.indd 139 6/5/09 11:18:10 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 4 ■ BUILDING USer INterFaCeS aND USING CONtrOLS140

<TextView android:id="@+id/disclaimerLbl"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true"
 android:text="Use at your own risk... " />

</RelativeLayout>

Figure 4-17. A UI laid out using the RelativeLayout layout manager

As shown, the user interface looks like a simple login form. The username label is
pinned to the top of the container because we set android:layout_alignParentTop to true.
Similarly, the username input field is positioned below the username label because we set
android:layout_below. The password label appears below the username label, the password
input field appears below the password label, and the disclaimer label is pinned to the bottom
of the container because we set android:layout_alignParentBottom to true.

Working with RelativeLayout is fun due to its simplicity. In fact, once you start using
it, it’ll become your favorite layout manager—you’ll find yourself going back to it over and
over again.

15967ch04.indd 140 6/5/09 11:18:10 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 4 ■ BUILDING USer INterFaCeS aND USING CONtrOLS 141

The AbsoluteLayout Layout Manager
The layout managers discussed thus far implement specific but very different strategies for
laying out the contents of a container. Android also offers a layout manager that allows you to
specify the exact position for the controls in the container. This layout manager is called
AbsoluteLayout (see Listing 4-33).

Listing 4-33. An XML Layout Using AbsoluteLayout

<AbsoluteLayout
android:layout_width="fill_parent"
android:layout_height="fill_parent"
xmlns:android="http://schemas.android.com/apk/res/android"
>

<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Username:"
android:layout_x="50px"
android:layout_y="50px" />

<EditText
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_x="160px"
android:layout_y="50px" />

<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Password:"
android:layout_x="50px"
android:layout_y="100px" />

<EditText
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_x="160px"
android:layout_y="100px" />

</AbsoluteLayout>

The user interface generated from the layout in Listing 4-33 is shown in Figure 4-18.

15967ch04.indd 141 6/5/09 11:18:10 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 4 ■ BUILDING USer INterFaCeS aND USING CONtrOLS142

Figure 4-18. A UI that uses the AbsoluteLayout layout manager

The user interface shown in Figure 4-18 is a familiar UI—we have used this in several of our
previous examples. The difference is obviously in the XML layout. As shown in Listing 4-33, we
define two TextView instances along with two EditText fields. But in this example we’ve speci-
fied the x-y coordinates of the controls, whereas we didn’t do that in the previous examples.

Note that the screen-coordinate system used in Android defines (0,0) as the top-left
corner of the screen. As you move to the right, the x coordinate increases. Similarly, as you
move down, the y coordinate increases.

In our examples thus far, we have generated user interfaces with the XML layouts.
Although this is the recommended approach, you don’t have to do it this way. In fact, most of
the time you’ll have to mix XML layout with Java code to create UIs. AbsoluteLayout is a good
candidate for this approach because you can dynamically calculate the location of controls.
Listing 4-34 shows how you can position an image using AbsoluteLayout.

Listing 4-34. Using the AbsoluteLayout Programmatically

public void onCreate(Bundle icicle)
{
 super.onCreate(icicle);
 ImageView img = new ImageView(this);
 imgsetImageResource(R.drawable.myimage);

 AbsoluteLayout al = new AbsoluteLayout(this);

 mContentView.addView(img,
 new AbsoluteLayout.LayoutParams(
 50, // width
 50, //height
 0, //left
 0); //top

 setContentView(al);
}

Listing 4-34 loads an image from the drawable resource folder and then positions it at
(50,50). It then sets the content view of the activity to an AbsoluteLayout.

15967ch04.indd 142 6/5/09 11:18:10 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 4 ■ BUILDING USer INterFaCeS aND USING CONtrOLS 143

The FrameLayout Layout Manager
The layout managers that we’ve discussed implement various layout strategies. In other
words, each one has a specific way that it positions and orients its children on the screen. With
these layout managers, you can have many controls on the screen at one time, each taking up
a portion of the screen. Android also offers a layout manager that is mainly used to display a
single item. This layout manager is called the FrameLayout layout manager. You mainly use
this utility layout class to dynamically display a single view, but you can populate it with many
items, setting one to visible while the others are nonvisible. Listing 4-35 demonstrates using a
FrameLayout.

Listing 4-35. Populating a FrameLayout

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/frmLayout"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <ImageView
 android:id="@+id/oneImgView" android:src="@drawable/one"
 android:scaleType="fitCenter"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"/>
 <ImageView
 android:id="@+id/twoImgView" android:src="@drawable/two"
 android:scaleType="fitCenter"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:visibility="gone" />

</FrameLayout>

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.frame);

 ImageView one = (ImageView)this.findViewById(R.id.oneImgView);
 ImageView two = (ImageView)this.findViewById(R.id.twoImgView);

 one.setOnClickListener(new OnClickListener(){

 @Override
 public void onClick(View view) {
 ImageView two = (ImageView)FramelayoutActivity.this.

15967ch04.indd 143 6/5/09 11:18:10 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 4 ■ BUILDING USer INterFaCeS aND USING CONtrOLS144

findViewById(R.id.twoImgView);

 two.setVisibility(View.VISIBLE);

 view.setVisibility(View.GONE);
 }});

 two.setOnClickListener(new OnClickListener(){

 @Override
 public void onClick(View view) {
 ImageView one = (ImageView)FramelayoutActivity.
this.findViewById(R.id.oneImgView);

 one.setVisibility(View.VISIBLE);

 view.setVisibility(View.GONE);
 }});
}

Listing 4-35 shows the layout file as well as the onCreate() method of the activity. The idea
of the demonstration is to load two ImageView objects in the FrameLayout, with only one of the
ImageView objects visible at a time. In the UI, when the user clicks the visible image, we hide
one image and show the other one.

Look at Listing 4-35 more closely now, starting with the layout. You can see that we define
a FrameLayout with two ImageView objects (an ImageView is a control that knows how to display
images). Notice that the second ImageView’s visibility is set to gone, making the control invis-
ible. Now look at the onCreate() method. In the onCreate() method, we register listeners to
click events on the ImageView objects. In the click handler, we hide one ImageView and show
the other one.

As we said earlier, you generally use the FrameLayout when you need to dynamically set
the content of a view to a single control. Although this is the general practice, the control will
accept many children, as we demonstrated. Listing 4-35 adds two controls to the layout but
has one of the controls visible at a time. The FrameLayout, however, does not force you to have
only one control visible at a time. If you add many controls to the layout, the FrameLayout will
simply stack the controls, one on top of the other, with the last one on top. This can create an
interesting UI. For example, Figure 4-19 shows a FrameLayout with two ImageView objects that
are visible. You can see that the controls are stacked, and that the top one is partially covering
the image behind it.

Another interesting aspect of the FrameLayout is that if you add more than one control to
the layout, the size of the layout is computed as the size of the largest item in the container. In
Figure 4-19, the top image is actually much smaller than the image behind it, but because the
size of the layout is computed based on the largest control, the image on top is stretched.

Also note that if you put many controls inside a FrameLayout with one or more of them
invisible to start, you might want to consider using setConsiderGoneChildrenWhenMeasuring().
Because the largest child dictates the layout size, you’ll have a problem if the largest child
is invisible to begin with. That is, when it becomes visible, it will be only partially visible. To
ensure that all items get rendered properly, call setConsiderGoneChildrenWhenMeasuring() and
pass it a boolean value of true.

15967ch04.indd 144 6/5/09 11:18:11 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 4 ■ BUILDING USer INterFaCeS aND USING CONtrOLS 145

Figure 4-19. A FrameLayout with two ImageView objects

Customizing Layout for Various Screen Configurations
By now you know very well that Android offers a host of layout managers that help you build
user interfaces. If you’ve played around with the layout managers that we’ve discussed, then
you know that you can combine the layout managers in various ways to obtain the look and
feel that you want. Even with all the layout managers, building UIs—and getting them right—
can be a challenge. This is especially true for mobile devices. Users and manufacturers of
mobile devices are getting more and more sophisticated, and that makes the developer’s job
even more challenging.

One of the challenges is building a UI for an application that displays in various screen
configurations. For example, what would your UI look like if your application were displayed
in portrait vs. landscape? If you haven’t run into this yet, your mind is probably racing right
now, wondering how to deal with this common scenario. Interestingly, and thankfully,
Android provides some support for this use case.

Here’s how it works: Android will find and load layouts from specific folders based on the
configuration of the device. A device can be in one of three configurations: portrait, landscape,
or square. To provide different layouts for the various configurations, you have to create spe-
cific folders for each configuration from which Android will load the appropriate layout. As
you know, the default layout folder is located at res/layout. To support the portrait display,
create a folder called res/layout-port. For landscape, create a folder called res/layout-land.
And for square, create one called res/layout-square.

A good question at this point is, “With these three folders, do I need the default layout
folder (res/layout)?” Generally, yes. Realize that Android’s resource-resolution logic looks in
the configuration-specific directory first. If Android doesn’t find a resource there, it goes to the
default layout directory. Therefore, you can place default-layout definitions in res/layout and
the customized versions in the configuration-specific folders.

15967ch04.indd 145 6/5/09 11:18:11 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 4 ■ BUILDING USer INterFaCeS aND USING CONtrOLS146

Note that the Android SDK does not offer any APIs for you to programmatically specify
which configuration to load—the system simply selects the folder based on the configuration
of the device. Also realize that the layout is not the only resource that is configuration-driven.
The entire contents of the res folder can have variations for each configuration. For example,
to have different drawables loaded per configuration, create folders for drawable-port,
drawable-land, and drawable-square.

Understanding Adapters
Adapters have several responsibilities, as we’ll see, but generally speaking, they make bind-
ing data to a control easier and more flexible. Adapters in Android are employed for widgets
that extend android.widget.AdapterView. Classes that extend AdapterView include ListView,
GridView, Spinner, and Gallery (see Figure 4-20). AdapterView itself actually extends android.
widget.ViewGroup, which means that ListView, GridView, and so on are container controls. In
other words, they display a collection of child controls.

View

ViewGroup

AdapterView

ListView GridView Spinner Gallery

Figure 4-20. AdapterView class hierarchy

The purpose of an adapter is to provide the child views for the container. It takes the data
and metadata about the view to construct each child view. Let’s see how this works by examin-
ing the SimpleCursorAdapter.

Getting to Know SimpleCursorAdapter
The SimpleCursorAdapter, which we’ve used many times already, is depicted in Figure 4-21.

15967ch04.indd 146 6/5/09 11:18:11 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 4 ■ BUILDING USer INterFaCeS aND USING CONtrOLS 147

ListView Resultset

Data for row 0

Data for row 1

Data for row 2

Data for row 3

Data for row 4

Data for row 5

TextView

TextView

TextView

TextView

SimpleCursorAdapter

R.layout.childView

Figure 4-21. The SimpleCursorAdapter

The constructor of SimpleCursorAdapter looks like this: SimpleCursorAdapter(Context
context, int layout, Cursor c, String[] from, int[] to). This adapter converts a row in
the cursor to a child view for the container control. The definition of the child view is defined
in an XML resource (layout parameter). Note that because a row in the cursor might have
many columns, you tell the SimpleCursorAdapter which columns you want to select from the
row by specifying an array of column names (using the from parameter).

Similarly, because each column you select is mapped to a TextView, you must specify the
IDs in the to parameter. There’s a one-to-one mapping between the column that you select
and a TextView that displays the data in the column, so the from and to parameters must be the
same size.

Figure 4-21 reveals some flexibility in using adapters. Because the container control oper-
ates on an adapter, you can substitute various types of adapters based on your data and child
view. For example, if you are not going to populate an AdapterView from the database, you
don’t have to use the SimpleCursorAdapter. You can opt for an even “simpler” adapter—the
ArrayAdapter.

Getting to Know ArrayAdapter
The ArrayAdapter is the simplest of the adapters in Android. It specifically targets list controls
and assumes that TextView controls represent the list items (the child views). Creating a new
ArrayAdapter generally looks like this:

ArrayAdapter<String> adapter = new ArrayAdapter<String>(
this,android.R.layout.simple_list_item_1,
new string[]{"sayed","satya"});

The constructor in the preceding code creates an ArrayAdapter where the TextView con-
trols’ data is represented by strings. Note that android.R.layout.simple_list_item_1 points to
a TextView defined by the Android SDK.

ArrayAdapter provides a handy method that you can use, if the data for the list comes
from a resource file. Listing 4-36 shows an example.

15967ch04.indd 147 6/5/09 11:18:11 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 4 ■ BUILDING USer INterFaCeS aND USING CONtrOLS148

Listing 4-36. Creating an ArrayAdapter from a String-Resource File

Spinner s2 = (Spinner) findViewById(R.id.spinner2);

adapter = ArrayAdapter.createFromResource(this,
R.array.planets,android.R.layout.simple_spinner_item);

adapter.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item);

s2.setAdapter(adapter);

<string-array name="planets">
 <item>Mercury</item>
 <item>Venus</item>
 <item>Earth</item>
 <item>Mars</item>
 <item>Jupiter</item>
 <item>Saturn</item>
 <item>Uranus</item>
 <item>Neptune</item>
 <item>Pluto</item>
</string-array>

Listing 4-36 shows that ArrayAdapter has a utility method called createFromResource()
that can create an ArrayAdapter whose data source is defined in a string-resource file. Using
this method allows you not only to externalize the contents of the list to an XML file, but also
to use localized versions.

Creating Custom Adapters
Adapters in Android are easy to use, but they have some limitations. To address this, Android
provides an abstract class called BaseAdapter that you can extend if you need a custom
adapter. The adapters that ship with the SDK all extend this base adapter. Thus, if you are
looking to extend an adapter, you could consider the following adapters:

	 •	 ArrayAdapter<T>: This is an adapter on top of a generic array of arbitrary objects. It’s
meant to be used with a ListView.

	 •	 CursorAdapter: This adapter, also meant to be used in a ListView, provides data to the
list via a cursor.

	 •	 SimpleAdapter: As the name suggests, this adapter is a simple adapter. The
SimpleAdapter is generally used to populate a list with static data (possibly from
resources).

	 •	 ResourceCursorAdapter: This adapter extends CursorAdapter and knows how to create
views from resources.

	 •	 SimpleCursorAdapter: This adapter extends ResourceCursorAdapter and creates
TextView/ImageView views from the columns in the cursor. The views are defined in
resources.

15967ch04.indd 148 6/5/09 11:18:11 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 4 ■ BUILDING USer INterFaCeS aND USING CONtrOLS 149

This concludes our discussion about building UIs. In the next section, we are going to
introduce you to the Hierarchy Viewer tool. This tool will help you debug and optimize your
user interfaces.

Debugging and Optimizing Layouts with the
Hierarchy Viewer
The Android SDK ships with a host of tools that you can use to make your development life a
lot easier. Because we are on the topic of user interface development, it makes sense for us to
discuss the Hierarchy Viewer tool. This tool, shown in Figure 4-22, allows you to debug your
user interfaces from a layout perspective.

Figure 4-22. The layout view of the Hierarchy Viewer tool

As shown in Figure 4-22, the Hierarchy Viewer shows the hierarchy of views in the form of
a tree. The idea is this: you load a layout into the tool and then inspect the layout to (1) deter-
mine possible layout problems, and/or (2) try to optimize the layout so that you minimize the
number of views (for performance reasons).

To debug your UIs, run your application in the emulator and browse to the UI that you
want to debug. Then go to the Android SDK /tools directory to start the Hierarchy Viewer tool.
On a Windows installation, you’ll see a batch file called hierarchyviewer.bat in the /tools
directory. When you run the batch file, you’ll see the Hierarchy Viewer’s Devices screen (see
Figure 4-23).

15967ch04.indd 149 6/5/09 11:18:11 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 4 ■ BUILDING USer INterFaCeS aND USING CONtrOLS150

Figure 4-23. The Hierarchy Viewer’s Devices screen

The Devices screen’s left pane displays the set of devices (emulators, in this case) running
on the machine. When you select a device, the list of windows in the selected device appears in
the right pane. To view the hierarchy of views for a particular window, select that window from
the right pane (typically the fully qualified name of your activity prefixed with the application’s
package name). To load the layout, click the “Load View Hierarchy” button.

In the view-hierarchy screen, you’ll see the window’s hierarchy of views in the left pane
(see Figure 4-22). When you select a view element in the left pane, you can see the properties
of that element in the properties view to the right and you can see the location of the view,
relative to the other views, in the wire-frame pane to the right. The selected view will be high-
lighted with a red border.

Figure 4-22 shows two buttons in the status bar of the Hierarchy Viewer tool. The left
button displays the Tree view that we explained earlier. The right button displays the current
layout in Pixel Perfect view. This view is interesting in that you get a pixel-by-pixel representa-
tion of your layouts.

Summary
At this point, you should have a good overview of the controls that are available in the Android
SDK. You should also be familiar with Android’s layout managers, as well as its adapters. Given
a potential screen requirement, you should be able to quickly identify the controls and layout
managers that you’ll use to build the screen.

In the next chapter, we’ll take user interface development further—we are going to discuss
menus and dialogs.

15967ch04.indd 150 6/5/09 11:18:11 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

C h a p t e r 5

Working with Menus
and Dialogs

In Chapter 3 we introduced you to resources, content providers, and intents—the founda-
tions of the Android SDK. Then we covered UI controls and layouts in Chapter 4. Now we’ll
show you how to work with Android menus and dialogs.

The Android SDK offers extensive support for menus and dialogs. You’ll learn to work with
several of the menu types that Android supports, including regular menus, submenus, context
menus, icon menus, secondary menus, and alternative menus. The Android SDK also allows
you to load menus from XML files and generates resource IDs for each of the loaded menu
items. We will cover these XML menu resources as well.

Dialogs in Android are asynchronous, which provides flexibility. But if you are accus-
tomed to the Microsoft Windows environment where dialogs are synchronous, you might find
asynchronous dialogs a bit hard to use. After giving you the basics of creating and using these
Android dialogs, we will provide an abstraction that will make it easier to use them.

Understanding Android Menus
Whether you’ve worked with Swing in Java, with WPF (Windows Presentation Foundation) in
Windows, or with any other UI framework, you’ve no doubt worked with menus. In addition
to providing comprehensive support for menus, Android presents some new patterns such as
XML menus and alternative menus.

We will start this chapter by describing the basic classes involved in the Android menu
framework. In the process, you will learn how to create menus and menu items, and how to
respond to menu items. The key class in Android menu support is android.view.Menu. Every
activity in Android is associated with a menu object of this type, which can contain a number
of menu items and submenus. Menu items are represented by android.view.MenuItem and
submenus are represented by android.view.SubMenu. These relationships are graphically rep-
resented in Figure 5-1. Strictly speaking, this is not a class diagram, but a structural diagram
designed to help you visualize the relationships between the various menu-related classes
and functions.

151

15967ch05.indd 151 6/5/09 11:17:54 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 5 ■ WOrKING WIth MeNUS aND DIaLOGS 152

Activity

Contains a
single menu

Menu Module

Menu

SubMenu

MenuItem

Contains

0 or more

Contains
0 or more

Con
tai

ns

0 o
r m

ore

onCreateOptionsMenu
(callback)

onOptionsItemSelected
(callback)

Figure 5-1. Structure of Android menu classes

You can group menu items together by assigning each one a group ID, which is merely an
attribute. Multiple menu items that carry the same group ID are considered part of the same
group. In addition to carrying a group ID, a menu item also carries a name (title), a menu-
item ID, and a sort-order ID (or number). You use the sort-order IDs to specify the order of
menu items within a menu. For example, if one menu item carries a sort-order number of 4
and another menu item carries a sort-order number of 6, then the first menu item will appear
above the second menu item in the menu.

Some of these order-number ranges are reserved for certain kinds of menus. Second-
ary menu items, which are considered less important than others, start at 0x30000 and are
defined by the constant Menu.CATEGORY_SECONDARY. Other types of menu categories—such
as system menus, alternative menus, and container menus—have different order-number
ranges. System menu items start at 0x20000 and are defined by the constant Menu.
CATEGORY_SYSTEM. Alternative menu items start at 0x40000 and are defined by the constant
Menu.CATEGORY_ALTERNATIVE. Container menu items start at 0x10000 and are defined by the
constant Menu.CATEGORY_CONTAINER. By looking at the values for these constants, you can see
the order in which they’ll appear in the menu. (We’ll discuss these various types of menu
items in the “Working with Other Menu Types” section.)

Figure 5-1 also shows two callback methods that you can use to create and respond to
menu items: onCreateOptionsMenu and onOptionsItemSelected. We will cover these in the next
few subsections.

15967ch05.indd 152 6/5/09 11:17:54 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 5 ■ WOrKING WIth MeNUS aND DIaLOGS 153

Creating a Menu
In the Android SDK, you don’t need to create a menu object from scratch. Because an activ-
ity is associated with a single menu, Android creates this single menu and passes it to the
onCreateOptionsMenu callback method. (As the name of the method indicates, menus in
Android are also known as options menus.) This method allows you to populate the menu
with a set of menu items (see Listing 5-1).

Listing 5-1. Signature for the onCreateOptionsMenu Method

@Override
public boolean onCreateOptionsMenu(Menu menu)
{
 // populate menu items
 …..
 ...return true;
}

Once the menu items are populated, the code should return true to make the menu vis-
ible. If this method returns false, the menu becomes invisible. The code in Listing 5-2 shows
how to add three menu items using a single group ID along with incremental menu-item IDs
and sort-order IDs.

Listing 5-2. Adding Menu Items

@Override
public boolean onCreateOptionsMenu(Menu menu)
{
 //call the base class to include system menus
 super.onCreateOptionsMenu(menu);

menu.add(0 // Group
 ,1 // item id
 ,0 //order
 ,"append"); // title

 menu.add(0,2,1,"item2");
 menu.add(0,3,2,"clear");

 //It is important to return true to see the menu
 return true;
}

You should also call the base-class implementation of this method to give the system
an opportunity to populate the menu with system menu items. To keep these system menu
items separate from other kinds of menu items, Android adds them starting at 0x20000. (As we
mentioned before, the constant Menu.CATEGORY_SYSTEM defines the starting ID for these system
menu items.)

15967ch05.indd 153 6/5/09 11:17:54 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 5 ■ WOrKING WIth MeNUS aND DIaLOGS 154

The first parameter required for adding a menu item is the group ID (an integer). The
second parameter is the menu-item ID, which is sent back to the callback function when that
menu item is chosen. The third argument represents the sort-order ID.

The last argument is the name or title of the menu item. Instead of free text, you can use a
string resource through the R.java constants file. The group ID, menu-item ID, and sort-order
ID are all optional; you can use Menu.NONE if you don’t want specify any of those.

Now we’ll show you how to work with menu groups. Listing 5-3 shows how you would add
two groups of menus: Group 1 and Group 2.

Listing 5-3. Using Group IDs to Create Menu Groups

@Override
public boolean onCreateOptionsMenu(Menu menu)
{
 //Group 1
 int group1 = 1;
 menu.add(group1,1,1,"g1.item1");
 menu.add(group1,2,2,"g1.item2");

 //Group 2
 int group2 = 2;
 menu.add(group2,3,3,"g2.item1");
 menu.add(group2,4,4,"g2.item2");

 return true; // it is important to return true
}

Notice how the menu-item IDs and the sort-order IDs are independent of the groups. So
what good is a group, then? You can manipulate a group’s menu items using these methods:

removeGroup(id)
setGroupCheckable(id, checkable, exclusive)
setGroupEnabled(id,boolean enabled)
setGroupVisible(id,visible)

removeGroup removes all menu items from that group, given the group ID. You can enable
or disable menu items in a given group using the setGroupEnabled method. Similarly, you can
control the visibility of a group of menu items using setGroupVisible.

setGroupCheckable is more interesting. You can use this method to show a check mark
on a menu item when that menu item is selected. When applied to a group, it will enable this
functionality for all menu items within that group. If this method’s exclusive flag is set, then
only one menu item within that group is allowed to go into a checked state. The other menu
items will remain unchecked.

Responding to Menu Items
There are multiple ways of responding to menu-item clicks in Android. You can use the
onOptionsItemSelected method, you can use listeners, or you can use intents. We will cover
each of these techniques in this section.

15967ch05.indd 154 6/5/09 11:17:54 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 5 ■ WOrKING WIth MeNUS aND DIaLOGS 155

responding to Menu Items through onOptionsItemSelected
When a menu item is clicked, Android calls the onOptionsItemSelected callback method on the
Activity class (see Listing 5-4).

Listing 5-4. Signature and Body of the onOptionsItemSelected Method

@Override
public boolean onOptionsItemSelected(MenuItem item)
{
 switch(item.getItemId()) {

 }
 //for items handled
 return true;

 //for the rest
 ...return super.onOptionsItemSelected(item);
}

The key pattern here is to examine the menu-item ID through the getItemId() method
of the MenuItem class and do what’s necessary. If onOptionsItemSelected() handles a menu
item, it returns true. The menu event will not be further propagated. For the menu-item call-
backs that onOptionsItemSelected() doesn’t deal with, onOptionsItemSelected() should call
the parent method through super.onOptionsItemSelected. The default implementation of
the onOptionsItemSelected() method returns false so that the “normal” processing can take
place. Normal processing includes alternative means of invoking responses for a menu click.

responding to Menu Items through Listeners
You usually respond to menus by overriding onOptionsItemSelected; this is the recommended
technique for better performance. However, a menu item allows you to register a listener that
could be used as a callback.

This approach is a two-step process. In the first step, you implement the
OnMenuClickListener interface. Then you take an instance of this implementation and
pass it to the menu item. When the menu item is clicked, the menu item will call the
onMenuItemClick() method of the OnMenuClickListener interface (see Listing 5-5).

Listing 5-5. Using a Listener as a Callback for a Menu-Item Click

//Step 1
public class MyResponse implements OnMenuClickListener
{
 //some local variable to work on
 //...
 //Some constructors
 @override
 boolean onMenuItemClick(MenuItem item)

15967ch05.indd 155 6/5/09 11:17:54 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 5 ■ WOrKING WIth MeNUS aND DIaLOGS 156

 {
 //do your thing
 return true;
 }
}

//Step 2
MyResponse myResponse = new MyResponse(...);
menuItem.setOnMenuItemClickListener(myResponse);
...

The onMenuItemClick method is called when the menu item has been invoked. This code
executes right when the menu item is clicked, even before the onOptionsItemSelected method
is called. If onMenuItemClick returns true, no other callbacks will be executed—including the
onOptionsItemSelected callback method. This means that the listener code takes precedence
over the onOptionsItemSelected method.

Using an Intent to respond to Menu Items
You can also associate a menu item with an intent by using the MenuItem’s method
setIntent(intent). By default, a menu item has no intent associated with it. But when an
intent is associated with a menu item, and nothing else handles the menu item, then the
default behavior is to invoke the intent using startActivity(intent). For this to work, all
the handlers—especially the onOptionsItemSelected method—should call the parent class’s
onOptionsItemSelected() method for those items that are not handled. Or you could look at
it this way: the system gives onOptionsItemSelected an opportunity to handle menu items first
(followed by the listener, of course).

If you don’t override the onOptionsItemSelected method, then the base class in the
Android framework will do what’s necessary to invoke the intent on the menu item. But if you
do override this method and you’re not interested in this menu item, then you must call the
parent method, which in turn facilitates the intent invocation. So here’s the bottom line: either
don’t override the onOptionsItemSelected method, or override it and invoke the parent for the
menu items that you are not handling.

Creating a Test Harness for Testing Menus
Congratulations. You have learned how to create menus and how to respond to them through
various callbacks. Now we’ll show you a sample activity to exercise these menu APIs that you
have learned so far.

The goal of this exercise is to create a simple activity with a text view in it. The text view
will act like the output of a debugger. As we show and invoke menus, we will write out the
invoked menu-item name and menu-item ID to this text view. The finished Menus application
will look like the one shown in Figure 5-2.

Figure 5-2 shows two things of interest: the menu and the text view. The menu appears
at the bottom. You will not see it, though, when you start the application; you must click the
Menu button on the emulator or the device in order to see the menu. The second point of
interest is the text view that lists the debug messages near the top of the screen. As you click
through the available menu items, the test harness logs the menu-item names in the text view.
If you click the “clear” menu item, the program clears the text view.

15967ch05.indd 156 6/5/09 11:17:54 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 5 ■ WOrKING WIth MeNUS aND DIaLOGS 157

Figure 5-2. Sample Menus application

■Note Figure 5-2 does not necessarily represent the beginning state of the sample application. We have
presented it here to illustrate the menu types that we’ll cover in this chapter.

Follow these steps to implement the test harness:

 1. Create an XML layout file that contains the text view.

 2. Create an Activity class that hosts the layout defined in step 1.

 3. Set up the menu.

 4. Add some regular menu items to the menu.

 5. Add some secondary menu items to the menu.

 6. Respond to the menu items.

 7. Modify the AndroidManifest.xml file to show the application’s proper title.

We will cover each of these steps in the following sections and provide the necessary
source code to assemble the test harness.

15967ch05.indd 157 6/5/09 11:17:54 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 5 ■ WOrKING WIth MeNUS aND DIaLOGS 158

Creating an XML Layout
Step 1 involves creating a simple XML layout file with a text view in it (see Listing 5-6). You
could load this file into an activity during its startup.

Listing 5-6. XML Layout File for the Test Harness

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<TextView android:id="@+id/textViewId"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Debugging Scratch Pad"
 />
</LinearLayout>

Creating an activity
Step 2 dictates that you create an activity, which is also a simple process. Assuming that the
layout file in step 1 is available at \res\layout\main.xml, you can use that file through its
resource ID to populate the activity’s view (see Listing 5-7).

Listing 5-7. Menu Test Harness Activity Class

public class SampleMenusActivity extends Activity {

 //Initialize this in onCreateOptions
 Menu myMenu = null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);
 }

For brevity, we have not included the import statements. In Eclipse, you can automati-
cally populate the import statements by pulling up the context menu in the editor and
selecting Source ➤ Organize Imports.

Setting Up the Menu
Now that you have a view and an activity, you can move on to step 3: overriding the
onCreateOptionsMenu and setting up the menu programmatically (see Listing 5-8).

15967ch05.indd 158 6/5/09 11:17:54 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 5 ■ WOrKING WIth MeNUS aND DIaLOGS 159

Listing 5-8. Setting Up the Menu Programatically

 @Override
 public boolean onCreateOptionsMenu(Menu menu)
 {
 //call the parent to attach any system level menus
 super.onCreateOptionsMenu(menu);

 this.myMenu = menu;

 //add a few normal menus
 addRegularMenuItems(menu);

 //add a few secondary menus
 add5SecondaryMenuItems(menu);

 //it must return true to show the menu
 //if it is false menu won't show
 return true;
 }

The code in Listing 5-8 first calls the parent onCreateOptionsMenu to give the parent an
opportunity to add any system-level menus. Note that in releases 1.0, 1.1, and 1.5 of the
Android SDK, this method does not add new menu items. The code then remembers the Menu
object in order to manipulate it later for demonstration purposes. After that, the code pro-
ceeds to add a few regular menu items and a few secondary menu items.

adding regular Menu Items
Now for step 4: adding a few regular menu items to the menu. The code for addRegularMenuItems
appears in Listing 5-9.

Listing 5-9. The addRegularMenuItems Function
 private void addRegularMenuItems(Menu menu)
 {
 int base=Menu.FIRST; // value is 1

 menu.add(base,base,base,"append");
 menu.add(base,base+1,base+1,"item 2");
 menu.add(base,base+2,base+2,"clear");

 menu.add(base,base+3,base+3,"hide secondary");
 menu.add(base,base+4,base+4,"show secondary");

 menu.add(base,base+5,base+5,"enable secondary");
 menu.add(base,base+6,base+6,"disable secondary");

 menu.add(base,base+7,base+7,"check secondary");
 menu.add(base,base+8,base+8,"uncheck secondary");
 }

15967ch05.indd 159 6/5/09 11:17:54 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 5 ■ WOrKING WIth MeNUS aND DIaLOGS 160

The Menu class defines a few convenience constants, one of which is Menu.FIRST. You
can use this as a baseline number for menu IDs and other menu-related sequential num-
bers. Notice how you can peg the group ID at base and increment only the sort-order ID and
menu-item ID. In addition, the code adds a few specific menu items such as “hide secondary,”
“enable secondary,” and others to demonstrate some of the menu concepts.

adding Secondary Menu Items
Let us now add a few secondary menu items to perform step 5 (see Listing 5-10). Secondary
menu items, as mentioned earlier, start at 0x30000 and are defined by the constant Menu.
CATEGORY_SECONDARY. Their sort-order IDs are higher than regular menu items, so they appear
after the regular menu items in a menu. Note that the sort order is the only thing that distin-
guishes a secondary menu item from a regular menu item. In all other aspects, a secondary
menu item works and behaves like any other menu item.

Listing 5-10. Adding Secondary Menu Items

 private void add5SecondaryMenuItems(Menu menu)
 {
 //Secondary items are shown just like everything else
 int base=Menu.CATEGORY_SECONDARY;

 menu.add(base,base+1,base+1,"sec. item 1");
 menu.add(base,base+2,base+2,"sec. item 2");
 menu.add(base,base+3,base+3,"sec. item 3");
 menu.add(base,base+3,base+3,"sec. item 4");
 menu.add(base,base+4,base+4,"sec. item 5");
 }

responding to Menu-Item Clicks
Now that the menus are set up, we move on to step 6: responding to them. When a menu item
is clicked, Android calls the onOptionsItemSelected callback method of the Activity class by
passing a reference to the clicked menu item. You then use the getItemId() method on the
MenuItem to see which item it is.

It is not uncommon to see either a switch statement or a series of if and else statements
calling various functions in response to menu items. Listing 5-11 shows this standard pattern
of responding to menu items in the onOptionsItemSelected callback method. (You will learn
a slightly better way of doing the same thing in the “Loading Menus Through XML Files” sec-
tion, where you will have symbolic names for these menu-item IDs.)

Listing 5-11. Responding to Menu-Item Clicks

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 if (item.getItemId() == 1) {
 appendText("\nhello");
 }

15967ch05.indd 160 6/5/09 11:17:55 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 5 ■ WOrKING WIth MeNUS aND DIaLOGS 161

 else if (item.getItemId() == 2) {
 appendText("\nitem2");
 }
 else if (item.getItemId() == 3) {
 emptyText();
 }
 else if (item.getItemId() == 4) {
 //hide secondary
 this.appendMenuItemText(item);
 this.myMenu.setGroupVisible(Menu.CATEGORY_SECONDARY,false);
 }
 else if (item.getItemId() == 5) {
 //show secondary
 this.appendMenuItemText(item);
 this.myMenu.setGroupVisible(Menu.CATEGORY_SECONDARY,true);
 }
 else if (item.getItemId() == 6) {
 //enable secondary
 this.appendMenuItemText(item);
 this.myMenu.setGroupEnabled(Menu.CATEGORY_SECONDARY,true);
 }
 else if (item.getItemId() == 7) {
 //disable secondary
 this.appendMenuItemText(item);
 this.myMenu.setGroupEnabled(Menu.CATEGORY_SECONDARY,false);
 }
 else if (item.getItemId() == 8) {
 //check secondary
 this.appendMenuItemText(item);
 myMenu.setGroupCheckable(Menu.CATEGORY_SECONDARY,true,false);
 }
 else if (item.getItemId() == 9) {
 //uncheck secondary
 this.appendMenuItemText(item);
 myMenu.setGroupCheckable(Menu.CATEGORY_SECONDARY,false,false);
 }
 else {
 this.appendMenuItemText(item);
 }
 //should return true if the menu item
 //is handled
 return true;
 }

Listing 5-11 also exercises operations on menus at the group level; calls to these methods
are highlighted in bold. The code also logs the details about the clicked menu item to the
TextView. Listing 5-12 shows some utility functions to write to the TextView. Notice an addi-
tional method on a MenuItem to get its title.

15967ch05.indd 161 6/5/09 11:17:55 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 5 ■ WOrKING WIth MeNUS aND DIaLOGS 162

Listing 5-12. Utility Functions to Write to the Debug TextView

//Given a string of text append it to the TextView
 private void appendText(String text) {
 TextView tv = (TextView)this.findViewById(R.id.textViewId);
 tv.setText(tv.getText() + text);
 }

//Given a menu item append its title to the TextView
 private void appendMenuItemText(MenuItem menuItem) {
 String title = menuItem.getTitle().toString();
 TextView tv = (TextView)this.findViewById(R.id.textViewId);
 tv.setText(tv.getText() + "\n" + title);
 }
//Empty the TextView of its contents
 private void emptyText() {
 TextView tv = (TextView)this.findViewById(R.id.textViewId);
 tv.setText("");
 }

tweaking the androidManifest.xml File
Your final step in the process to create the test harness is to update the application’s
AndroidManifest.xml file. This file, which is automatically created for you when you create a
new project, is available in your project’s root directory.

This is the place where you register the Activity class (such as SampleMenusActivity) and
where you specify a title for the activity. We called this activity “Sample Menus Application,” as
shown in Figure 5-2. See this entry highlighted in Listing 5-13.

Listing 5-13. The AndroidManifest.xml File for the Test Harness

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="your-package-name-goes-here "
 android:versionCode="1"
 android:versionName="1.0.0">
 <application android:icon="@drawable/icon" android:label="Sample Menus">
 <activity android:name=".SampleMenusActivity"
 android:label="Sample Menus Application">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

15967ch05.indd 162 6/5/09 11:17:55 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 5 ■ WOrKING WIth MeNUS aND DIaLOGS 163

Using the code we’ve provided, you should be able to quickly construct this test harness
for experimenting with menus. We showed you how to create a simple activity initialized with
a text view, and then how to populate and respond to menus. Most menus follow this basic yet
functional pattern. You can use Figure 5-2 as a guide for what kind of UI to expect when you
are done with the exercise. But as we pointed out, what you see might not exactly match the
figure because we haven’t yet shown you how to add the icon menus. Your UI might differ even
after you add the icon menus, because your images might differ from the images we used.

Working with Other Menu Types
So far we’ve covered some the of the simpler, although quite functional, menu types. As you
walk through the SDK, you will see that Android also supports icon menus, submenus, context
menus, and alternative menus. Out of these, alternative menus are unique to Android. We will
cover all of these menu types in this section.

Expanded Menus
Recall from Figure 5-2 that the sample application displays a menu item called “More” at the
bottom-right corner of the menu. We didn’t show you how to add this menu item in any of the
sample code, so where does it come from?

If an application has more menu items than it can display on the main screen, Android
shows the “More” menu item to allow the user to see the rest. This menu, called an expanded
menu, shows up automatically when there are too many menu items to display in the limited
amount of space. But the expanded menu has a limitation: it cannot accommodate icons.
Users who click “More” will see a resultant menu that omits icons.

Working with Icon Menus
Now that we’ve hinted at icon menus, let’s talk about them in more detail. Android supports
not only text, but also images or icons as part of its menu repertoire. You can use icons to
represent your menu items instead of and in addition to text. But note a few limitations when
it comes to using icon menus. First, as you saw in the previous paragraph, you can’t use icon
menus for expanded menus. Second, icon menu items do not support menu-item check
marks. Third, if the text in an icon menu item is too long, it will be truncated after a certain
number of characters depending on the size of the display. (This last limitation applies to text-
based menu items also.)

Creating an icon menu item is straightforward. You create a regular text-based menu item
as before, then you use the setIcon method on the MenuItem class to set the image. You’ll need
to use the image’s resource ID, so you must generate it first by placing the image or icon in the
/res/drawable directory. For example, if the icon’s file name is balloons, then the resource ID
will be R.drawable.balloons.

Here is some sample code that demonstrates this:

//add a menu item and remember it so that you can use it
//subsequently to set the icon on it.
MenuItem item8 = menu.add(base,base+8,base+8,"uncheck secondary");
item8.setIcon(R.drawable.balloons);

15967ch05.indd 163 6/5/09 11:17:55 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 5 ■ WOrKING WIth MeNUS aND DIaLOGS 164

As you add menu items to the menu, you rarely need to keep a local variable returned
by the menu.add method. But in this case, you need to remember the returned object so you
can add the icon to the menu item. The code in this example also demonstrates that the type
returned by the menu.add method is MenuItem.

The icon will show as long as the menu item is displayed on the main application screen.
If it’s displayed as part of the expanded menu, the icon will not show. The menu item display-
ing an image of balloons in Figure 5-2 is an example of an icon menu item.

Working with Submenus
Let’s take a look at Android’s submenus now. Figure 5-1 points out the structural relationship
of a SubMenu to a Menu and a MenuItem. A Menu object can have multiple SubMenu objects. Each
SubMenu object is added to the Menu object through a call to the Menu.addSubMenu method (see
Listing 5-14). You add menu items to a submenu the same way that you add menu items to
a menu. This is because SubMenu is also derived from a Menu object. However, you cannot add
additional submenus to a submenu.

Listing 5-14. Adding Submenus

private void addSubMenu(Menu menu)
{
 //Secondary items are shown just like everything else
 int base=Menu.FIRST + 100;
 SubMenu sm = menu.addSubMenu(base,base+1,Menu.NONE,"submenu");
 sm.add(base,base+2,base+2,"sub item1");
 sm.add(base,base+3,base+3, "sub item2");
 sm.add(base,base+4,base+4, "sub item3");

 //submenu item icons are not supported
 item1.setIcon(R.drawable.icon48x48_2);

 //the following is ok however
 sm.setIcon(R.drawable.icon48x48_1);

 //This will result in a runtime exception
 //sm.addSubMenu("try this");
}

■Note A SubMenu, as a subclass of the Menu object, continues to carry the addSubMenu method. The
compiler won’t complain if you add a submenu to another submenu, but you’ll get a runtime exception if you
try to do it.

15967ch05.indd 164 6/5/09 11:17:55 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 5 ■ WOrKING WIth MeNUS aND DIaLOGS 165

The Android SDK documentation also suggests that submenus do not support icon menu
items. When you add an icon to a menu item and then add that menu item to a submenu, the
menu item will ignore that icon, even if you don’t see a compile-time or runtime error. How-
ever, the submenu itself can have an icon.

Provisioning for System Menus
Most Windows applications come with menus such as File, Edit, View, Open, Close, and Exit.
These menus are called system menus. The Android SDK suggests that the system could insert
a similar set of menus when an options menu is created. However, releases 1.0, 1.1, and 1.5 of
the Android SDK do not populate any of these menus as part of the menu-creation process. It
is conceivable that these system menus might be implemented in a subsequent release. The
documentation suggests that programmers make provisions in their code so that they can
accommodate these system menus when they become available. You do this by calling the
onCreateOptionsMenu method of the parent, which allows the system to add system menus to
a group identified by the constant CATEGORY_SYSTEM.

Working with Context Menus
Users of desktop programs are no doubt familiar with context menus. In Windows applica-
tions, for example, you can access a context menu by right-clicking a UI element. Android
supports the same idea of context menus through an action called a long click. A long click is a
mouse click held down slightly longer than usual on any Android view.

On handheld devices such as cell phones, mouse clicks are implemented in a number of
ways, depending on the navigation mechanism. If your phone has a wheel to move the cursor,
a press of the wheel would serve as the mouse click. Or if the device has a touch pad, then a
tap or a press would be equivalent to a mouse click. Or you might have a set of arrow buttons
for movement and a selection button in the middle; clicking that button would be equivalent
to clicking the mouse. Regardless of how a mouse click is implemented on your device, if you
hold the mouse click a bit longer you will realize the long click.

A context menu differs structurally from the standard options menu that we’ve been dis-
cussing (see Figure 5-3). Context menus have some nuances that options menus don’t have.

Figure 5-3 shows that a context menu is represented as a ContextMenu class in the Android
menu architecture. Just like a Menu, a ContextMenu can contain a number of menu items. You
will use the same set of Menu methods to add menu items to the context menu. The biggest
difference between a Menu and a ContextMenu boils down to the ownership of the menu in
question. An activity owns a regular options menu, whereas a view owns a context menu. This
is to be expected because the long clicks that activate context menus apply to the view being
clicked. So an activity can have only one options menu but many context menus. Because an
activity can contain multiple views, and each view can have its own context menu, an activity
can have as many context menus as there are views.

Although a context menu is owned by a view, the method to populate context menus
resides in the Activity class. This method is called activity.onCreateContextMenu(), and its
role resembles that of the activity.onCreateOptionsMenu() method. This callback method also
carries with it the view for which the context menu items are to be populated.

15967ch05.indd 165 6/5/09 11:17:55 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 5 ■ WOrKING WIth MeNUS aND DIaLOGS 166

Menu Module

Menu

ContextMenu

MenuItem

extends

Contains
0 or more

Associated
with

Creates
and returns

Register
for context

menu

Con
tai

ns

0 o
r m

ore

ContextMenuInfo

Contains a
single menu

onCreateContextMenu()

onCreateItemsSelected()

View

Derived
View

Derived
View
Derived

ContextMenuInfo

extends

extends

Activity

Figure 5-3. Activities, views, and context menus

There is one more notable wrinkle to the context menu. Whereas the onCreateOptionsMenu()
method is automatically called for every activity, this is not the case with onCreateContextMenu().
A view in an activity does not have to own a context menu. You can have three views in your
activity, for example, but perhaps you want to enable context menus for only one view and not
the others. If you want a particular view to own a context menu, you must register that view
with its activity specifically for the purpose of owning a context menu. You do this through the
activity.registerForContextMenu(view) method, which we’ll discuss in the section “Register-
ing a View for a Context Menu.”

Now note the ContextMenuInfo class shown in Figure 5-3. An object of this type is passed
to the onCreateContextMenu method. This is one way for the view to pass additional infor-
mation to this method. For a view to do this, it needs to override the getContextViewInfo()
method and return a derived class of ContextMenuInfo with additional methods to represent
the additional information. You might want to look at the source code for android.view.View
to fully understand this interaction.

■Note Per the Android SDK documentation, context menus do not support shortcuts, icons, or submenus.

15967ch05.indd 166 6/5/09 11:17:55 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 5 ■ WOrKING WIth MeNUS aND DIaLOGS 167

Now that you know the general structure of the context menus, let’s look at some sample
code that demonstrates each of the steps to implement a context menu:

 1. Register a view for a context menu in an activity’s onCreate() method.

 2. Populate the context menu using onCreateContextMenu(). You must complete step 1
before this callback method is invoked by Android.

 3. Respond to context-menu clicks.

registering a View for a Context Menu
The first step in implementing a context menu is registering a view for the context menu in
an activity’s onCreate() method. If you were to use the menu test harness introduced in this
chapter, you could register the TextView for a context menu in that test harness by using the
code in Listing 5-15. You will first find the TextView and then call registerForContextMenu on
the activity using the TextView as an argument. This will set up the TextView for context menus.

Listing 5-15. Registering a TextView for a Context Menu

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 TextView tv = (TextView)this.findViewById(R.id.textViewId);
 registerForContextMenu(this.getTextView());
 }

populating a Context Menu
Once a view like the TextView in this example is registered for context menus, Android will
call the onCreateContextMenu() method with this view as the argument. This is where you can
populate the context menu items for that context menu. The onCreateContextMenu() callback
method provides three arguments to work with.

The first argument is a preconstructed ContextMenu object, the second is the view (such
as the TextView) that generated the callback, and the third is the ContextMenuInfo class that
we covered briefly while discussing Figure 5-3. For a lot of simple cases, you can just ignore
the ContextMenuInfo object. However, some views might pass extra information through this
object. In those cases, you will need to cast the ContextMenuInfo class to a subclass and then
use the additional methods to retrieve the additional information.

Some examples of classes derived from ContextMenuInfo include AdapterContextMenuInfo
and ExpandableContextMenuInfo. Views that are tied to database cursors in Android use the
AdapterContextMenuInfo class to pass the row ID within that view for which the context menu
is being displayed. In a sense, you can use this class to further clarify the object underneath the
mouse click, even within a given view.

Listing 5-16 demonstrates the onCreateContextMenu() method.

15967ch05.indd 167 6/5/09 11:17:55 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 5 ■ WOrKING WIth MeNUS aND DIaLOGS 168

Listing 5-16. The onCreateContextMenu() Method

@Override
public void onCreateContextMenu(ContextMenu menu, View v, ContextMenuInfo menuInfo)
{
 menu.setHeaderTitle("Sample Context Menu");
 menu.add(200, 200, 200, "item1");
}

responding to Context Menu Items
The third step in our implementation of a context menu is responding to context-menu clicks.
The mechanism of responding to context menus is similar to the mechanism of responding
to options menus. Android provides a callback method similar to onOptionsItemSelected()
called onContextItemSelected(). This method, like its counterpart, is also available on the
Activity class. Listing 5-17 demonstrates onContextItemSelected().

Listing 5-17. Responding to Context Menus
@Override

public boolean onContextItemSelected(MenuItem item)

{

 if (item.itemId() = some-menu-item-id)

 {

 //handle this menu item

 return true;

 }

… other exception processing

}

Working with Alternative Menus
So far you have learned to create and work with menus, submenus, and context menus.
Android introduces a new concept called alternative menus, which allow alternative menu
items to be part of menus, submenus, and context menus. Alternative menus allow multiple
applications on Android to use one another. These alternative menus are part of the Android
interapplication communication or usage framework.

Specifically, alternative menus allow one application to include menus from another
application. When the alternative menus are chosen, the target application or activity will
be launched with a URL to the data needed by that activity. The invoked activity will then
use the data URL from the intent that is passed. To understand alternative menus well, you
must first understand content providers, content URIs, content MIME types, and intents (see
Chapter 3).

15967ch05.indd 168 6/5/09 11:17:55 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 5 ■ WOrKING WIth MeNUS aND DIaLOGS 169

The general idea here is this: imagine you are writing a screen to display some data. Most
likely, this screen will be an activity. On this activity, you will have an options menu that allows
you to manipulate or work with the data in a number of ways. Also assume for a moment that
you are working with a document or a note that is identified by a URI and a corresponding
MIME type. What you want to do as a programmer is anticipate that the device will eventu-
ally contain more programs that will know how to work with this data or display this data. You
want to give this new set of programs an opportunity to display their menu items as part of the
menu that you are constructing for this activity.

To attach alternative menu items to a menu, follow these steps while setting up the menu
in the onCreateOptionsMenu method:

 1. Create an intent whose data URI is set to the data URI that you are showing at the
moment.

 2. Set the category of the intent as CATEGORY_ALTERNATIVE.

 3. Search for activities that allow operations on data supported by this type of URI.

 4. Add intents that can invoke those activities as menu items to the menu.

These steps tell us a lot about the nature of Android applications, so we’ll examine each
one. As we know now, attaching the alternative menu items to the menu happens in the
onCreateOptionsMenu method:

@Override public boolean onCreateOptionsMenu(Menu menu)
{
}

Let us now figure out what code makes up this function. We first need to know the URI for
the data we might be working on in this activity. You can get the URI like this:

this.getIntent().getData()

This works because the Activity class has a method called getIntent() that returns the
data URI for which this activity is invoked. This invoked activity might be the main activ-
ity invoked by the main menu; in that case, it might not have an intent and the getIntent()
method will return null. In your code, you will have to guard against this situation.

Our goal now is to find out what other programs know how to work with this kind of data.
We do this search using an intent as an argument. Here’s the code to construct that intent:

 Intent criteriaIntent = new Intent(null, getIntent().getData());
 intent.addCategory(Intent.CATEGORY_ALTERNATIVE);

Once we construct the intent, we will also add a category of actions that we are interested
in. Specifically, we are interested only in activities that can be invoked as part of an alternative
menu. We are ready now to tell the Menu object to search for matching activities and add them
as menu options (see Listing 5-18).

15967ch05.indd 169 6/5/09 11:17:55 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 5 ■ WOrKING WIth MeNUS aND DIaLOGS 170

Listing 5-18. Populating a Menu with Alternative Menu Items

 // Search for, and populate the menu with matching Activities.
 menu.addIntentOptions(
 Menu.CATEGORY_ALTERNATIVE, // Group
 Menu.CATEGORY_ALTERNATIVE, // Any unique IDs we might care to add.
 Menu.CATEGORY_ALTERNATIVE, // order
 getComponentName(), // Name of the class displaying
 //the menu--here, it's this class.
 null, // No specifics.
 criteriaIntent, // Previously created intent that
 // describes our requirements.
 0, // No flags.
 null); // returned menu items

Before going through this code line by line, we’ll explain what we mean by the term
matching activities. A matching activity is an activity that’s capable of handling a URI that it
has been given. Activities typically register this information in their manifest files using URIs,
actions, and categories. Android provides a mechanism that lets you use an Intent object to
look for the matching activities given these attributes.

Now let’s look closely at Listing 5-18. The method addIntentOptions on the Menu class is
responsible for looking up the activities that match an intent’s URI and category attributes.
Then the method adds these activities to the menu under the right group with the appropri-
ate menu-item IDs and sort-order IDs. The first three arguments deal with this aspect of the
method’s responsibility. In Listing 5-18, we start off with the Menu.CATEGORY_ALTERNATIVE as the
group under which the new menu items will be added. We also use this same constant as the
starting point for the menu-item IDs and sort-order IDs.

The next argument points to the fully qualified component name of the activity that this
menu is part of. The code uses a helper method called getComponentName(); we will leave it as
an exercise for the reader to get a component name from the class and package names. This
component name is needed because when a new menu item is added, that menu item will
need to invoke the target activity. To do that, the system needs the source activity that started
the target activity. The next argument is an array of intents that you want to use as a filter on
the returned intents.

The next argument points to criteriaIntent, which we just constructed. This is the search
criteria we are going after. The argument after that is a flag such as Menu.FLAG_APPEND_TO_GROUP
to indicate whether to append to the set of existing menu items in this group or replace them.
The default value is 0, which indicates that the menu items in the menu group should be
replaced.

The last argument in Listing 5-18 is an array of menu items that are added. You could use
these added menu-item references if you want to manipulate them in some manner after add-
ing them.

All of this is well and good. But a few questions remain unanswered. For example, what
will be the names of the added menu items? The Android documentation is quite silent about
this. So we snooped around the source code to see what this function is actually doing behind
the scenes.

15967ch05.indd 170 6/5/09 11:17:55 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 5 ■ WOrKING WIth MeNUS aND DIaLOGS 171

As it turns out, the Menu class is only an interface, so we can’t see any implementation
source code for it. (Refer to Chapter 1 to see how to get to Android’s source code.) The class
that implements the Menu interface is called MenuBuilder. Listing 5-19 shows the source code of
a relevant method, addIntentOptions, from the MenuBuilder class. (We’re providing the code
for your reference; we won’t explain it line by line.)

Listing 5-19. MenuBuilder.addIntentOptions Method

 public int addIntentOptions(int group, int id, int categoryOrder,
 ComponentName caller,
 Intent[] specifics,
 Intent intent, int flags,
 MenuItem[] outSpecificItems)
 {
 PackageManager pm = mContext.getPackageManager();
 final List<ResolveInfo> lri =
 pm.queryIntentActivityOptions(caller, specifics, intent, 0);
 final int N = lri != null ? lri.size() : 0;

 if ((flags & FLAG_APPEND_TO_GROUP) == 0) {
 removeGroup(group);
 }

 for (int i=0; i<N; i++) {
 final ResolveInfo ri = lri.get(i);
 Intent rintent = new Intent(
 ri.specificIndex < 0 ? intent : specifics[ri.specificIndex]);
 rintent.setComponent(new ComponentName(
 ri.activityInfo.applicationInfo.packageName,
 ri.activityInfo.name));
 final MenuItem item = add(group, id, categoryOrder, ri.loadLabel(pm));
 item.setIntent(rintent);
 if (outSpecificItems != null && ri.specificIndex >= 0) {
 outSpecificItems[ri.specificIndex] = item;
 }
 }
 return N;
 }

Note the line in Listing 5-19 highlighted in bold; this portion of the code constructs a
menu item. The code delegates the work of figuring out a menu title to the ResolveInfo class.
The source code of the ResolveInfo class shows us that the intent-filter that declared this
intent should have a title associated with it. Here is an example:

<intent-filter android:label="Menu Title ">
 …….
 <category android:name="android.intent.category.ALTERNATE" />
 <data android:mimeType="some type data" />
</intent-filter>

15967ch05.indd 171 6/5/09 11:17:55 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 5 ■ WOrKING WIth MeNUS aND DIaLOGS 172

The label value of the intent-filter ends up serving as the menu name. You can go through
the Android Notepad example to see this behavior.

Working with Menus in Response to Changing Data
So far we’ve talked about static menus; you set them up once, and they don’t change
dynamically according to what’s onscreen. If you want to create dynamic menus, use
the onPrepareOptionsMenu method that Android provides. This method resembles
onCreateOptionsMenu except that it gets called every time a menu is invoked. You should
use onPrepareOptionsMenu, for example, if you want to disable some menus or menu groups
based on the data you are displaying. You might want to keep this in mind as you design
your menu functionality.

We need to cover one more important aspect of menus before moving on to dialogs.
Android supports the creation of menus using XML files. The next high-level topic is dedicated
to exploring this XML menu support in Android.

Loading Menus Through XML Files
Up until this point, we’ve created all our menus programmatically. This is not the most conve-
nient way to create menus because for every menu you have to provide several IDs and define
constants for each of those IDs. You’ll no doubt find this tedious.

Instead, you can define menus through XML files; you can do this in Android because
menus are also resources. The XML approach to menu creation offers several advantages, such
as the ability to name the menus, order them automatically, give them IDs, and so on. You can
also get localization support for the menu text.

Follow these steps to work with XML-based menus:

 1. Define an XML file with menu tags.

 2. Place the file in the /res/menu subdirectory. The name of the file is arbitrary, and you
can have as many files as you want. Android automatically generates a resource ID for
this menu file.

 3. Use the resource ID for the menu file to load the XML file into the menu.

 4. Respond to the menu items using the resource IDs generated for each menu item.

We will talk about each of these steps and provide corresponding code snippets in the
following sections.

Structure of an XML Menu Resource File
First we’ll look at an XML file with menu definitions (see Listing 5-20). All menu files start with
the same high-level menu tag followed by a series of group tags. This group tag corresponds to
the menu-item group we talked about at the beginning of the chapter. You can specify an ID
for the group using the @+id approach. Each menu group will have a series of menu items with
their menu-item IDs tied to symbolic names. You can refer to the Android SDK documentation
for all the possible arguments for these XML tags.

15967ch05.indd 172 6/5/09 11:17:55 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 5 ■ WOrKING WIth MeNUS aND DIaLOGS 173

Listing 5-20. An XML File with Menu Definitions

<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <!-- This group uses the default category. -->
 <group android:id="@+id/menuGroup_Main">
 <item android:id="@+id/menu_testPick"
 android:orderInCategory="5"
 android:title="Test Pick" />
 <item android:id="@+id/menu_testGetContent"
 android:orderInCategory="5"
 android:title="Test Get Content" />
 <item android:id="@+id/menu_clear"
 android:orderInCategory="10"
 android:title="clear" />
 <item android:id="@+id/menu_dial"
 android:orderInCategory="7"
 android:title="dial" />
 <item android:id="@+id/menu_test"
 android:orderInCategory="4"
 android:title="@+string/test" />
 <item android:id="@+id/menu_show_browser"
 android:orderInCategory="5"
 android:title="show browser" />
 </group>
</menu>

The menu XML file in Listing 5-20 has one group. Based on the resource ID definition
@+id/menuGroup_main, this group will be automatically assigned a resource ID called menuGroup_
main in the R.java resource ID file. Similarly, all the child menu items are allocated menu-item
IDs based on their symbolic resource ID definitions in this XML file.

Inflating XML Menu Resource Files
Let us assume that the name of this XML file is my_menu.xml. You will need to place this file in
the /res/menu subdirectory. Placing the file in /res/menu automatically generates a resource ID
called Resource.menu.my_menu.

Now let’s look at how you can use this menu resource ID to populate the options menu.
Android provides a class called android.view.MenuInflater to populate Menu objects from XML
files. We will use an instance of this MenuInflater to make use of the Resource.menu.my_menu
resource ID to populate a menu object:

@Override
public boolean onCreateOptionsMenu(Menu menu)
{
 MenuInflater inflater = getMenuInflater(); //from activity
 inflater.inflate(R.menu.menu1, menu);
}

15967ch05.indd 173 6/5/09 11:17:55 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 5 ■ WOrKING WIth MeNUS aND DIaLOGS 174

In this code, we first get the MenuInflater from the Activity class and then tell it to inflate
the menu XML file into the menu directly.

Responding to XML-Based Menu Items
You haven’t yet seen the specific advantage of this approach—it becomes apparent when you
start responding to the menu items. You respond to XML menu items the way you respond to
menus created programmatically, but with a small difference. As before, you handle the menu
items in the onOptionsItemSelected callback method. But this time, you will have some help
from Android’s resources (see Chapter 3 for details on resources). As we mentioned in the sec-
tion “Structure of an XML Menu Resource File,” Android not only generates a resource ID for
the XML file, but also generates the necessary menu-item IDs to help you distinguish between
the menu items. This is an advantage in terms of responding to the menu items because you
don’t have to explicitly create and manage their menu-item IDs.

To further elaborate on this, in the case of XML menus you don’t have to define constants
for these IDs and you don’t have to worry about their uniqueness because resource ID genera-
tion takes care of that. The following code illustrates this:

private void onOptionsItemSelected (MenuItem item)
{
 this.appendMenuItemText(item);
 if (item.getItemId() == R.id.menu_clear)
 {
 this.emptyText();
 }
 else if (item.getItemId() == R.id.menu_dial)
 {
 this.dial();
 }
 else if (item.getItemId() == R.id.menu_testPick)
 {
 IntentsUtils.invokePick(this);
 }
 else if (item.getItemId() == R.id.menu_testGetContent)
 {
 IntentsUtils.invokeGetContent(this);
 }
 else if (item.getItemId() == R.id.menu_show_browser)
 {
 IntentsUtils.tryOneOfThese(this);
 }
 }

Notice how the menu-item names from the XML menu resource file have automatically
generated menu-item IDs in the R.id space.

15967ch05.indd 174 6/5/09 11:17:55 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 5 ■ WOrKING WIth MeNUS aND DIaLOGS 175

A Brief Introduction to Additional XML Menu Tags
As you construct your XML files, you will need to know the various XML tags that are possible.
You can quickly get this information by examining the API demos that come with the Android
SDK. These Android API demos include a series of menus that help you explore all aspects of
Android programming. If you look at the /res/menu subdirectory, you will find a number of
XML menu samples. We’ll briefly cover some key tags here.

Group Category tag
In an XML file, you can specify the category of a group by using the menuCategory tag:

<group android:id="@+id/some_group_id "
 android:menuCategory="secondary">

Checkable Behavior tags
You can use the checkableBehavior tag to control checkable behavior at a group level:

<group android:id="@+id/noncheckable_group"
 android:checkableBehavior="none">

You can use the checked tag to control checkable behavior at an item level:

<item android:id=".."
 android:title="…"
 android:checked="true" />

tags to Simulate a Submenu
A submenu is represented as a menu element under a menu item:

 <item android:title="All without group">
 <menu>
 <item…>
 </menu>
 </item>

Menu Icon tag
You can use the icon tag to associate an image with a menu item:

 <item android:id=".. "
 android:icon="@drawable/some-file" />

15967ch05.indd 175 6/5/09 11:17:55 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 5 ■ WOrKING WIth MeNUS aND DIaLOGS 176

Menu enabling/Disabling tag
You can enable and disable a menu item using the enabled tag:

<item android:id=".. "
 android:enabled="true"
 android:icon="@drawable/some-file" />

Menu Item Shortcuts
You can set a shortcut for a menu item using the alphabeticShortcut tag:

 <item android:id="… "
 android:alphabeticShortcut="a"
 …
 </item>

Menu Visibility
You can control a menu item’s visibility using the visible flag:

<item android:id="… "
 android:visible="true"
 …
</item>

By now, we have covered options menus, submenus, icon menus, context menus, and
alternative menus. We also covered the means and advantages of using XML menus. Now let’s
turn our attention to Android’s support for dialogs.

Using Dialogs in Android
If you are coming from a desktop environment, you might need to think differently when you
work with Android dialogs. The primary difference is that the dialogs in Android are asynchro-
nous. This asynchronicity is a bit counterintuitive; it’s as if the front of your brain is having a
conversation with someone, while the back of your brain is thinking about something else.
However, the “split-brain” model isn’t that bad when it comes to computers. This asynchro-
nous approach does increase the handheld’s responsiveness.

Not only are Android dialogs asynchronous, but they are also managed; that is, they are
reused between multiple invocations. This design arose from the need to optimize memory
and performance as dialogs are created, shown, and dismantled.

In the following sections we will cover these aspects of Android dialogs in depth. We’ll
review the need for basic dialogs such as alert dialogs, and show you how to create and use
them. We will then show you how to work with prompt dialogs—dialogs that ask the user for
input and return that input to the program. We will also show you how to load your own view
layouts into dialogs.

We will then address the managed nature of Android dialogs by exploring the protocol to
create dialogs using callback functions in an activity. Finally, we will take the managed-dialog

15967ch05.indd 176 6/5/09 11:17:56 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 5 ■ WOrKING WIth MeNUS aND DIaLOGS 177

protocol that Android uses and abstract it out to make the asynchronous managed dialogs as
seamless as possible. This abstraction might prove helpful to you in itself, and it will also give
us an opportunity to explain the behind-the-scenes dialog architecture.

Designing an Alert Dialog
We will begin our exploration with alert dialogs. Alert dialogs commonly contain simple mes-
sages about validating forms or debugging. Consider the following debug example that you
often find in HTML pages:

if (validate(field1) == false)
{
 //indicate that formatting is not valid through an alert dialog
 showAlert("What you have entered in field1 doesn't match required format");
 //set focus to the field
 //..and continue
}

You would likely program this dialog in JavaScript through the alert function, which
displays a simple synchronous dialog box containing a message and an OK button. After the
user clicks the OK button, the flow of the program continues. This dialog is considered modal
as well as synchronous because the next line of code will not be executed until the alert func-
tion returns.

This type of alert dialog proves useful for debugging. But Android offers no such direct
function or dialog. Instead, it supports an alert-dialog builder, a general-purpose facility for
constructing and working with alert dialogs. So you can build an alert dialog yourself using
the android.app.AlertDialog.Builder class. You can use this builder class to construct dialogs
that allow users to perform the following tasks:

	 •	 Read	a	message	and	respond	with	Yes	or	No	

	 •	 Pick	an	item	from	a	list	

	 •	 Pick	multiple	items	from	a	list

	 •	 View	the	progress	of	an	application

	 •	 Choose	an	option	from	a	set	of	options

	 •	 Respond	to	a	prompt	before	continuing	the	program

We will show you how to build one of these dialogs and invoke that dialog from a menu
item. This approach, which applies to any of these dialogs, consists of these steps:

 1. Construct a Builder object.

 2. Set parameters for the display such as the number of buttons, the list of items, and so on.

 3. Set the callback methods for the buttons.

 4. Tell the Builder to build the dialog. The type of dialog that’s built depends on what
you’ve set on the Builder object.

 5. Use dialog.show() to show the dialog.

15967ch05.indd 177 6/5/09 11:17:56 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 5 ■ WOrKING WIth MeNUS aND DIaLOGS 178

Listing 5-21 shows the code that implements these steps.

Listing 5-21. Building and Displaying an Alert Dialog

public class Alerts
{
 public static void showAlert(String message, Context ctx)
{
 //Create a builder
 AlertDialog.Builder builder = new AlertDialog.Builder(ctx);
 builder.setTitle("Alert Window");

 //add buttons and listener
 PromptListener pl = new EmptyListener();
 builder.setPositiveButton("OK", pl);

 //Create the dialog
 AlertDialog ad = builder.create();

 //show
 ad.show();
 }
}

public class EmptyListener
implements android.content.DialogInterface.OnClickListener {
 public void onClick(DialogInterface v, int buttonId)
 {
 }
}

You can invoke the code in Listing 5-21 by creating a menu item in your test harness and
responding to it using this code:

if (item.getItemId() == R.id.menu_simple_alert)
{
 Alerts.showAlert("Simple Sample Alert", this);
}

The result will look like the screen shown in Figure 5-4.
The code for this simple alert dialog is straightforward (see Listing 5-21 and the code

snippet that appears after it). Even the listener part is easy to understand. Essentially, we
have nothing to perform when the button is clicked. We just created an empty listener to reg-
ister against the OK button. The only odd part is that you don’t do a new to create the dialog;
instead, you set parameters and ask the alert-dialog builder to create it.

15967ch05.indd 178 6/5/09 11:17:56 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 5 ■ WOrKING WIth MeNUS aND DIaLOGS 179

Figure 5-4. A simple alert dialog

Designing a Prompt Dialog
Now that you’ve successfully created a simple alert dialog, let’s tackle an alert dialog that’s a
little more complex: the prompt dialog. Another JavaScript staple, the prompt dialog shows the
user a hint or question and asks for input via an edit box. The prompt dialog returns that string
to the program so it can continue. This will be a good example to study because it features a
number of facilities provided by the Builder class and also allows us to examine the synchro-
nous, asynchronous, modal, and nonmodal nature of Android dialogs.

Here are the steps you need to take in order to create a prompt dialog:

 1. Come up with a layout view for your prompt dialog.

 2. Load the layout into a View class.

 3. Construct a Builder object.

 4. Set the view in the Builder object.

 5. Set the buttons along with their callbacks to capture the entered text.

 6. Create the dialog using the alert-dialog builder.

 7. Show the dialog.

Now we’ll show you the code for each step.

15967ch05.indd 179 6/5/09 11:17:56 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 5 ■ WOrKING WIth MeNUS aND DIaLOGS 180

XML Layout File for the prompt Dialog
When we show the prompt dialog, we need to show a prompt TextView followed by an edit box
where a user can type a reply. Listing 5-22 contains the XML layout file for the prompt dialog.
If you call this file prompt_layout.xml, then you need to place it in the /res/layout subdirec-
tory to produce a resource ID called R.layout.prompt_layout.

Listing 5-22. The prompt_layout.xml File

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:orientation="vertical">

 <TextView
 android:id="@+id/promptmessage"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:layout_marginLeft="20dip"
 android:layout_marginRight="20dip"
 android:text="Your text goes here"
 android:gravity="left"
 android:textAppearance="?android:attr/textAppearanceMedium" />

 <EditText
 android:id="@+id/editText_prompt"
 android:layout_height="wrap_content"
 android:layout_width="fill_parent"
 android:layout_marginLeft="20dip"
 android:layout_marginRight="20dip"
 android:scrollHorizontally="true"
 android:autoText="false"
 android:capitalize="none"
 android:gravity="fill_horizontal"
 android:textAppearance="?android:attr/textAppearanceMedium" />

</LinearLayout>

Setting Up an alert-Dialog Builder with a User View
Let’s combine steps 2 through 4 from our instructions to create a prompt dialog: loading the
XML view and setting it up in the alert-dialog builder. Android provides a class called android.
view.LayoutInflater to create a View object from an XML layout definition file. We will use an
instance of the LayoutInflater to populate the view for our dialog based on the XML layout file
(see Listing 5-23).

15967ch05.indd 180 6/5/09 11:17:56 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 5 ■ WOrKING WIth MeNUS aND DIaLOGS 181

Listing 5-23. Inflating a Layout into a Dialog

 LayoutInflater li = LayoutInflater.from(ctx);
 View view = li.inflate(R.layout.promptdialog, null);

 //get a builder and set the view
 AlertDialog.Builder builder = new AlertDialog.Builder(ctx);
 builder.setTitle("Prompt");
 builder.setView(view);

In Listing 5-23, we get the LayoutInflater using the static method LayoutInflater.
from(ctx) and then use the LayoutInflater object to inflate the XML to create a View object.
We then configure an alert-dialog builder with a title and the view that we just created.

Setting Up Buttons and Listeners
We now move on to step 5: setting up buttons. You need to provide OK and Cancel buttons so
the user can respond to the prompt. If the user clicks Cancel, then the program doesn’t need
to read any text for the prompt. If the user clicks OK, the program gets the value from the text
and passes it back to the activity.

To set up these buttons, you need a listener to respond to these callbacks. We will give you
the code for the listener in the “Prompt Dialog Listener” section, but first examine the button
setup in Listing 5-24.

Listing 5-24. Setting Up OK and Cancel Buttons

 //add buttons and listener
 PromptListener pl = new PromptListener(view,ctx);
 builder.setPositiveButton("OK", pl);
 builder.setNegativeButton("Cancel", pl);

The code in Listing 5-24 assumes that the name of the listener class is PromptListener. We
have registered this listener against each button.

Creating and Showing the prompt Dialog
Finally, we finish up with steps 6 and 7: creating and showing the prompt dialog. That’s easy to
do once you have the alert-dialog builder (see Listing 5-25).

Listing 5-25. Telling the Alert-Dialog Builder to Create the Dialog

 //get the dialog
 AlertDialog ad = builder.create();
 ad.show();

 //return the prompt
 return pl.getPromptReply();

The last line uses the listener to return the reply for the prompt. Now, as promised, we’ll
show you the code for the PromptListener class.

15967ch05.indd 181 6/5/09 11:17:56 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 5 ■ WOrKING WIth MeNUS aND DIaLOGS 182

prompt Dialog Listener
The prompt dialog interacts with an activity through a listener callback class called
PromptListener. The class has one callback method called onClick, and the button ID that is
passed to onClick identifies what type of button is clicked. The rest of the code is easy to follow
(see Listing 5-26). When the user enters text and clicks the OK button, the value of the text is
transferred to the promptReply field. Otherwise, the value stays null.

Listing 5-26. PromptListener, the Listener Callback Class

public class PromptListener
implements android.content.DialogInterface.OnClickListener
{
 // local variable to return the prompt reply value
 private String promptReply = null;

 //Keep a variable for the view to retrieve the prompt value
 View promptDialogView = null;

 //Take in the view in the constructor
 public PromptListener(View inDialogView) {
 promptDialogView = inDialogView;
 }

//Call back method from dialogs
 public void onClick(DialogInterface v, int buttonId) {
 if (buttonId == DialogInterface.BUTTON1) {
 //ok button
 promptReply = getPromptText();
 }
 else {
 //cancel button
 promptValue = null;
 }
 }

 //Just an access method for what is in the edit box
 private String getPromptText() {
 EditText et = (EditText)
 promptDialogView.findViewById(R.id.promptEditTextControlId);
 return et.getText().toString();
 }
 public String getPromptReply() { return promptReply; }
}

15967ch05.indd 182 6/5/09 11:17:56 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 5 ■ WOrKING WIth MeNUS aND DIaLOGS 183

putting It all together
Now that we have explained each piece of code that goes into a prompt dialog, we’ll pres-
ent it in one place so you can use it to test the dialog (see Listing 5-27). We have excluded the
PromptListener class because it appears separately in Listing 5-26.

Listing 5-27. Code to Test the Prompt Dialog

public class Alerts
{
 public static String prompt(String message, Context ctx)
 {
 //load some kind of a view
 LayoutInflater li = LayoutInflater.from(ctx);
 View view = li.inflate(R.layout.promptdialog, null);

 //get a builder and set the view
 AlertDialog.Builder builder = new AlertDialog.Builder(ctx);
 builder.setTitle("Prompt");
 builder.setView(view);

 //add buttons and listener
 PromptListener pl = new PromptListener(view,ctx);
 builder.setPositiveButton("OK", pl);
 builder.setNegativeButton("Cancel", pl);

 //get the dialog
 AlertDialog ad = builder.create();

 //show
 ad.show();

 return pl.getPromptReply();
 }
}

You can invoke the code in Listing 5-27 by creating a menu item in the test harness
described at the beginning of this chapter and responding to that menu item using this code:

if (item.getItemId() == R.id.menu_simple_alert)
{
 String reply = Alerts.showPrompt("Your text goes here", this);
}

The result should look like the screen shown in Figure 5-5.

15967ch05.indd 183 6/5/09 11:17:56 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 5 ■ WOrKING WIth MeNUS aND DIaLOGS 184

Figure 5-5. A simple prompt dialog

After writing all this code, however, you will notice that the prompt dialog always returns
null even if the user enters text into it. As it turns out, in the following code

ad.show() //dialog.show
return pl.getPromptReply(); // listener.getpromptReply()

the show() method will invoke the dialog asynchronously. This means the getPromptReply()
method gets called for the prompt value before the user has time to enter text and click the OK
button. This fallacy takes us to the heart of the nature of Android dialogs.

Nature of Dialogs in Android
As we’ve mentioned, displaying dialogs in Android is an asynchronous process. Once a dialog
is shown, the main thread that invoked the dialog returns and continues to process the rest of
the code. This doesn’t mean that the dialog isn’t modal. The dialog is still modal. The mouse
clicks apply only to the dialog, while the parent activity goes back to its message loop.

On some windowing systems, modal dialogs behave a bit differently. The caller is blocked
until the user provides a response through the dialog. (This block can be a virtual block instead
of a real block.) On the Windows operating system, the message-dispatching thread starts
dispatching to the dialog and suspends dispatching to the parent window. When the dialog
closes, the thread returns to the parent window. This makes the call synchronous.

15967ch05.indd 184 6/5/09 11:17:56 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 5 ■ WOrKING WIth MeNUS aND DIaLOGS 185

Such an approach might not work for a handheld device, where unexpected events
on the device are more frequent and the main thread needs to respond to those events. To
accomplish this level of responsiveness, Android returns the main thread to its message loop
right away.

The implication of this model is that you cannot have a simple dialog where you ask for a
response and wait for it before moving on. In fact, your programming model for dialogs must
differ in its incorporation of callbacks.

Rearchitecting the Prompt Dialog
Let us revisit the problematic code in the previous prompt-dialog implementation:

if (item.getItemId() == R.id.menu_simple_alert)
{
 String reply = Alerts.showPrompt("Your text goes here", this);
}

As we have proved through the discussion, the value of the string variable reply will be
null, because the prompt dialog initiated by Alerts.showPrompt() is incapable of returning a
value on the same thread. The only way you can accomplish this is to have the activity imple-
ment the callback method directly and not rely on the PromptListener class. Get this done in
the Activity class by implementing the OnClickListener:

public class SampleActivity extends Activity
implements android.content.DialogInterface.OnClickListener
{
…… other code

if (item.getItemId() == R.id.menu_simple_alert)
{
 Alerts.showPrompt("Your text goes here", this);
}
…..
public void onClick(DialogInterface v, int buttonId)
{
 //figure out a way here to read the reply string from the dialog
}

As you can see from this onClick callback method, you can correctly read the variables
from the instantiated dialog because the user will have closed the dialog by the time this
method is called.

It is perfectly legitimate to use dialogs this way. However, Android provides a supple-
mental mechanism to optimize performance by introducing managed dialogs—dialogs
that are reused between multiple invocations. You’ll still need to use callbacks when you
work with managed dialogs, though. In fact, everything you’ve learned in implementing
the prompt dialog will help you work with managed dialogs and understand the motivation
behind them.

15967ch05.indd 185 6/5/09 11:17:56 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 5 ■ WOrKING WIth MeNUS aND DIaLOGS 186

Working with Managed Dialogs
Android follows a managed-dialog protocol to promote the reuse of previously created dialog
instances rather than create new dialogs in response to actions. In this section, we will talk
about the details of the managed-dialog protocol and show you how to implement the alert
dialog as a managed dialog. However, in our view, the managed-dialog protocol makes using
dialogs tedious. We will subsequently develop a small framework to abstract out most of this
protocol to make it easier to work with managed dialogs.

Understanding the Managed-Dialog Protocol
The primary goal of the managed-dialog protocol is to reuse a dialog if it’s invoked a second
time. It is similar to using object pools in Java. The managed-dialog protocol consists of these
steps:

 1. Assign a unique ID to each dialog you want to create and use. Suppose one of the
dialogs is tagged as 1.

 2. Tell Android to show a dialog called 1.

 3. Android checks whether the current activity already has a dialog tagged as 1. If the dia-
log exists, Android shows it without re-creating it. Android calls the onPrepareDialog()
function before showing the dialog, for cleanup purposes.

 4. If the dialog doesn’t exist, Android calls the onCreateDialog method by passing the
dialog ID (1, in this case).

 5. You, as the programmer, need to override the onCreateDialog method. You must create
the dialog using the alert-dialog builder and return it. But before creating the dialog,
your code needs to determine which dialog ID needs to be created. You’ll need a switch
statement to figure this out.

 6. Android shows the dialog.

 7. The dialog calls the callbacks when its buttons are clicked.

Let’s now use this protocol to reimplement our nonmanaged alert dialog as a managed
alert dialog.

Recasting the Nonmanaged Dialog as a Managed Dialog
We will follow each of the steps laid out to reimplement the alert dialog. Let’s start by defining
a unique ID for this dialog in the context of a given activity:

//unique dialog id
private static final int DIALOG_ALERT_ID = 1;

That is simple enough. We have just created an ID to represent a dialog to orchestrate the
callbacks. This ID will allow us to do the following in response to a menu item:

 if (item.getItemId() == R.id.menu_simple_alert)
{
 showDialog(this.DIALOG_ALERT_ID);
}

15967ch05.indd 186 6/5/09 11:17:56 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 5 ■ WOrKING WIth MeNUS aND DIaLOGS 187

The Android SDK method showDialog triggers a call to the onCreateDialog() method.
Android is smart enough not to call onCreateDialog() multiple times. When this method is
called, we need to create the dialog and return it to Android. Android then keeps the created
dialog internally for reuse purposes. Here is the sample code to create the dialog based on a
unique ID:

 @Override
 protected Dialog onCreateDialog(int id) {
 switch (id) {
 case DIALOG_ALERT_ID:
 return createAlertDialog();
 }
 return null;
 }

 private Dialog createAlertDialog()
 {
 AlertDialog.Builder builder = new AlertDialog.Builder(this);
 builder.setTitle("Alert");
 builder.setMessage("some message");
 EmptyOnClickListener emptyListener = new EmptyOnClickListener();
 builder.setPositiveButton("Ok", emptyListener);
 AlertDialog ad = builder.create();
 return ad;
 }

Notice how onCreateDialog() has to figure out the incoming ID to identify a matching
dialog. createAlertDialog() itself is kept in a separate function and parallels the alert-dialog
creation described in the previous sections. This code also uses the same EmptyOnClickListener
that was used when we worked with the alert dialog.

Because the dialog is created only once, you need a mechanism if you want to change
something in the dialog every time you show it. You do this through the onPrepareDialog()
callback method:

 @Override
 protected void onPrepareDialog(int id, Dialog dialog) {
 switch (id) {
 case DIALOG_ALERT_ID:
 prepareAlertDialog(dialog);
 }
 }

 private void prepareAlertDialog(Dialog d) {
 AlertDialog ad = (AlertDialog)d;
 //change something about this dialog
 }

With this code in place, showDialog(1) will work. Even if you were to invoke this method
multiple times, your onCreateMethod will get called only once. You can follow the same proto-
col to redo the prompt dialog.

15967ch05.indd 187 6/5/09 11:17:56 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 5 ■ WOrKING WIth MeNUS aND DIaLOGS 188

So responding to dialog callbacks is work, but the managed-dialog protocol adds even
more work. After looking at the managed-dialog protocol, we got the idea to abstract out the
protocol and rearrange it in such a way that it accomplishes two goals:

	 •	 Moving	the	dialog	identification	and	creation	out	of	the	activity	class

	 •	 Concentrating	the	dialog	creation	and	response	in	a	dedicated	dialog	class

In the next subsection, we will go through the design of this framework and then use it to
re-create both the alert and prompt dialogs.

Simplifying the Managed-Dialog Protocol
As you’ve probably noticed, working with managed alert dialogs can become quite messy and
can pollute the mainline code. If we abstract out this protocol into a simpler protocol, the new
protocol could look like this:

 1. Create an instance of a dialog you want by using new and keeping it as a local variable.
Call this dialog1.

 2. Show the dialog using dialog1.show().

 3. Implement one method in the activity called dialogFinished().

 4. In the dialogFinished() method, read attributes from dialog1 such as dialog1.
getValue1().

Under this scheme, showing a managed alert dialog will look like this:

….class MyActivity ….
{
 //new dialog
 ManagedAlertDialog mad = new ManagedAlertDialog("message", …, ..);

 ….some menu method
 if (item.getItemId() == R.id.menu_simple_alert)
 {
 //show dialog
 mad.show();
 }
 …..
 //access the mad dialog for internals if you want
 dialogFinsihed()
 {
 ….
 //use values from dialog
 mad.getA();
 mad.getB();
 }
}

15967ch05.indd 188 6/5/09 11:17:56 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 5 ■ WOrKING WIth MeNUS aND DIaLOGS 189

We would like to think this is a far simpler model to work with dialogs. You don’t have to
remember IDs, you don’t have to pollute the mainline code with dialog creation, and you can
use derived dialog objects directly to access values.

The principle of this abstraction is as follows. As a first step, we abstract out the creation
of a dialog and the preparation of that dialog into a class that identifies a base dialog. We
call this interface IDialogProtocol. This dialog also has a show() method on it directly. These
dialogs are collected and kept in a registry in the base class for an activity, and they use their
IDs as keys. The base activity will de-multiplex the onCreate, onPrepare, and onClick calls
based on their IDs and reroute them to the dialog class. This architecture is further illus-
trated in Figure 5-6.

Android SDK Area

Small Asynchronous Dialog Framework

Using the framework

ManagedActivityDialog

GenericPromptDialog

Generic
ManagedAlertDialog

Activity

ManagedDialogsActivity

YourActivity

registerDialogs()

IDialogFinishedCallBack

dialogFinished()

OnClickListener

dialogFinished()

create

IDialogProtocol

Create()
Prepare()

getDialogId()
Show()

onClickHook()DialogRegistry
registerDialog()

implements

prepare

dialogFinished()
registerDialogs()

extends

implements

one

many

New them.
Show them.

Gather variables from them
on dialogFinished().

has

has

extends extends

Figure 5-6. A simple managed-dialog framework

Listing 5-28 illustrates the utility of this framework.

15967ch05.indd 189 6/5/09 11:17:57 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 5 ■ WOrKING WIth MeNUS aND DIaLOGS 190

Listing 5-28. The Abstraction of the Managed-Dialog Protocol

public class MainActivity extends ManagedDialogsActivity
{
 //dialog 1
 private GenericManagedAlertDialog gmad =
 new GenericManagedAlertDialog(this,1,"InitialValue");

 //dialog 2
 private GenericPromptDialog gmpd =
 new GenericPromptDialog(this,2,"InitialValue");

 //menu items to start the dialogs
 else if (item.getItemId() == R.id.menu_simple_alert)
 {
 gmad.show();
 }
 else if (item.getItemId() == R.id.menu_simple_prompt)
 {
 gmpd.show();
 }

 //dealing with call backs
 public void dialogFinished(ManagedActivityDialog dialog, int buttonId)
 {
 if (dialog.getDialogId() == gmpd.getDialogId())
 {
 String replyString = gmpd.getReplyString();
 }
 }
}

To make use of this framework, you start by extending ManagedDialogsActivity. Then
you instantiate the dialogs you need, each of which derives from ManagedActivityDialog. In
a menu-item response, you can simply do a show() on these dialogs. The dialogs themselves
take the necessary parameters up front in order to be created and shown. Although we are
passing a dialog ID, we don’t need to remember those IDs anymore. You could even abstract
these IDs out completely if you’d like.

Now we’ll explore each of the classes shown in Figure 5-6.

IDialogprotocol
The IDialogProtocol interface defines what it means to be a managed dialog. Responsibilities
of a managed dialog include creating the dialog and preparing it every time it is shown. It also
makes sense to delegate the show functionality to the dialog itself. A dialog also must recognize
button clicks and call the respective parent of the dialog closure. The following interface code
represents these ideas as a set of functions:

15967ch05.indd 190 6/5/09 11:17:57 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 5 ■ WOrKING WIth MeNUS aND DIaLOGS 191

public interface IDialogProtocol
{
 public Dialog create();
 public void prepare(Dialog dialog);
 public int getDialogId();
 public void show();
 public void onClickHook(int buttonId);
}

ManagedactivityDialog
The abstract class ManagedActivityDialog provides the common implementation for all the
dialog classes wanting to implement the IDialogProtocol interface. It leaves the create and
prepare functions to be overridden by the base classes, but provides implementations for the
rest of the IDialogProtocol methods. ManagedActivityDialog also informs the parent activity
that the dialog has finished after responding to a button-click event. It uses the template-hook
pattern and allows the derived classes to specialize the hook method onClickHook. This class is
also responsible for redirecting the show() method to the parent activity, thereby providing a
more natural implementation for show(). You should use the ManagedActivityDialog class as
the base class for all your new dialogs (see Listing 5-29).

Listing 5-29. The ManagedActivityDialog Class

public abstract class ManagedActivityDialog implements IDialogProtocol
 ,android.content.DialogInterface.OnClickListener

{
 private ManagedDialogsActivity mActivity;
 private int mDialogId;
 public ManagedActivityDialog(ManagedDialogsActivity a, int dialogId)
 {
 mActivity = a;
 mDialogId = dialogId;
 }
 public int getDialogId()
 {
 return mDialogId;
 }
 public void show()
 {
 mActivity.showDialog(mDialogId);
 }
 public void onClick(DialogInterface v, int buttonId)
 {
 onClickHook(buttonId);
 this.mActivity.dialogFinished(this, buttonId);
 }
}

15967ch05.indd 191 6/5/09 11:17:57 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 5 ■ WOrKING WIth MeNUS aND DIaLOGS 192

Dialogregistry
The DialogRegistry class is responsible for two things. It keeps a mapping between the
dialog IDs and the actual dialog (factory) instances. It also translates the generic onCreate
and onPrepare calls to the specific dialogs using the ID-to-object mapping. The
ManagedDialogsActivity uses the DialogRegistry class as a repository to register new
dialogs (see Listing 5-30).

Listing 5-30. The DialogRegistry Class

public class DialogRegistry
{
 SparseArray<IDialogProtocol> idsToDialogs
 = new SparseArray();

 public void registerDialog(IDialogProtocol dialog)
 {
 idsToDialogs.put(dialog.getDialogId(),dialog);
 }

 public Dialog create(int id)
 {
 IDialogProtocol dp = idsToDialogs.get(id);
 if (dp == null) return null;

 return dp.create();
 }
 public void prepare(Dialog dialog, int id)
 {
 IDialogProtocol dp = idsToDialogs.get(id);
 if (dp == null)
 {
 throw new RuntimeException("Dialog id is not registered:" + id);
 }
 dp.prepare(dialog);
 }
}

ManagedDialogsactivity
The ManagedDialogsActivity class acts as a base class for your activities that support man-
aged dialogs. It keeps a single instance of DialogRegistry to keep track of the managed
dialogs identified by the IDialogProtocol interface. It allows the derived activities to
register their dialogs through the registerDialogs() function. As shown in Figure 5-6, it
is also responsible for transferring the create and prepare semantics to the respective dialog
instance by locating that dialog instance in the dialog registry. Finally, it provides the call-
back method dialogFinished for each dialog in the dialog registry (see Listing 5-31).

15967ch05.indd 192 6/5/09 11:17:57 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 5 ■ WOrKING WIth MeNUS aND DIaLOGS 193

Listing 5-31. The ManagedDialogsActivity Class

public class ManagedDialogsActivity extends Activity
 implements IDialogFinishedCallBack
{
 //A registry for managed dialogs
 private DialogRegistry dr = new DialogRegistry();

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 this.registerDialogs();
 }

 protected void registerDialogs()
 {
 // does nothing
 // have the derived classes override this method
 // to register their dialogs
 // example:
 // registerDialog(this.DIALOG_ALERT_ID_3, gmad);

 }
 public void registerDialog(IDialogProtocol dialog)
 {
 this.dr.registerDialog(dialog);
 }

 @Override
 protected Dialog onCreateDialog(int id) {
 return this.dr.create(id);
 }
 @Override
 protected void onPrepareDialog(int id, Dialog dialog) {
 this.dr.prepare(dialog, id);
 }

 public void dialogFinished(ManagedActivityDialog dialog, int buttonId)
 {
 //nothing to do
 //have derived classes override this
 }
}

IDialogFinishedCallBack
The IDialogFinishedCallBack interface allows the ManagedActivityDialog class to tell the par-
ent activity that the dialog has finished and that the parent activity can call methods on the
dialog to retrieve parameters. Usually a ManagedDialogsActivity implements this interface and
acts as a parent activity to the ManagedActivityDialog (see Listing 5-32).

15967ch05.indd 193 6/5/09 11:17:57 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 5 ■ WOrKING WIth MeNUS aND DIaLOGS 194

Listing 5-32. The IDialogFinishedCallBack Interface

public interface IDialogFinishedCallBack
{
 public static int OK_BUTTON = -1;
 public static int CANCEL_BUTTON = -2;
 public void dialogFinished(ManagedActivityDialog dialog, int buttonId);
}

GenericManagedalertDialog
GenericManagedAlertDialog is the alert-dialog implementation; it extends
ManagedActivityDialog. This class is responsible for creating the actual alert dialog
using the alert-dialog builder. It also carries all the information it needs as local variables.
Because GenericManagedAlertDialog implements a simple alert dialog, it does nothing in
the onClickHook method. The key thing to note is that when you use this approach,
GenericManagedAlertDialog encapsulates all pertinent information in one place (see
Listing 5-33). That keeps the mainline code in the activity squeaky-clean.

Listing 5-33. The GenericManagedAlertDialog Class

public class GenericManagedAlertDialog extends ManagedActivityDialog
{
 private String alertMessage = null;
 private Context ctx = null;
 public GenericManagedAlertDialog(ManagedDialogsActivity inActivity,
 int dialogId,
 String initialMessage)
 {
 super(inActivity,dialogId);
 alertMessage = initialMessage;
 ctx = inActivity;
 }
 public Dialog create()
 {
 AlertDialog.Builder builder = new AlertDialog.Builder(ctx);
 builder.setTitle("Alert");
 builder.setMessage(alertMessage);
 builder.setPositiveButton("Ok", this);
 AlertDialog ad = builder.create();
 return ad;
 }

 public void prepare(Dialog dialog)
 {
 AlertDialog ad = (AlertDialog)dialog;
 ad.setMessage(alertMessage);
 }

15967ch05.indd 194 6/5/09 11:17:57 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 5 ■ WOrKING WIth MeNUS aND DIaLOGS 195

 public void setAlertMessage(String inAlertMessage)
 {
 alertMessage = inAlertMessage;
 }
 public void onClickHook(int buttonId)
 {
 //nothing to do
 //no local variables to set
 }
}

GenericpromptDialog
The GenericPromptDialog class encapsulates all the needs of a prompt dialog by extending the
ManagedActivityDialog class and providing the necessary create and prepare methods (see
Listing 5-34). You can also see that it saves the reply text in a local variable so that the parent
activity can get to it in the dialogFinished callback method.

Listing 5-34. The GenericPromptDialog Class

public class GenericPromptDialog extends ManagedActivityDialog
{
 private String mPromptMessage = null;
 private View promptView = null;
 String promptValue = null;

 private Context ctx = null;
 public GenericPromptDialog(ManagedDialogsActivity inActivity,
 int dialogId,
 String promptMessage)
 {
 super(inActivity,dialogId);
 mPromptMessage = promptMessage;
 ctx = inActivity;
 }
 public Dialog create()
 {
 LayoutInflater li = LayoutInflater.from(ctx);
 promptView = li.inflate(R.layout.promptdialog, null);
 AlertDialog.Builder builder = new AlertDialog.Builder(ctx);
 builder.setTitle("prompt");
 builder.setView(promptView);
 builder.setPositiveButton("OK", this);
 builder.setNegativeButton("Cancel", this);
 AlertDialog ad = builder.create();
 return ad;
 }

15967ch05.indd 195 6/5/09 11:17:57 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 5 ■ WOrKING WIth MeNUS aND DIaLOGS 196

 public void prepare(Dialog dialog)
 {
 //nothing for now
 }
 public void onClickHook(int buttonId)
 {
 if (buttonId == DialogInterface.BUTTON1)
 {
 //ok button
 String promptValue = getEnteredText();
 }
 }
 private String getEnteredText()
 {
 EditText et =
 (EditText)
 promptView.findViewById(R.id.editText_prompt);
 String enteredText = et.getText().toString();
 Log.d("xx",enteredText);
 return enteredText;
 }
}

Summary
You now have a thorough understanding of Android menus and dialogs, which are key compo-
nents of UI programming. You learned how to work with the various kinds of menus available
in Android, including submenus, icon menus, context menus, and alternative menus. You also
saw how to work with menus more effectively by using XML menu resources.

We presented a test harness for the menus, which you’ll find useful not only for testing
menus but also for testing other programs you end up writing. Menus provide a simple way to
invoke and test new functionality.

You also saw that dialogs present a special challenge in Android. We showed you the
implications of asynchronous dialogs and presented an abstraction to simplify the managed
dialogs.

The knowledge you gained in this chapter and in the previous chapter on UI controls
should give you a good foundation for writing your own complex UI programs. This founda-
tion should also serve you well in preparation for the next chapter on animation.

15967ch05.indd 196 6/5/09 11:17:57 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

C h a p t e r 6

Unveiling 2D animation

The previous chapters should’ve given you a solid introduction to UI programming in Android.
In this chapter, we would like to further strengthen your ability to create intuitive and appeal-
ing applications on the Android Platform by covering the animation capabilities of the Android
SDK. If our experience is any guide, we assert that animation brings a lot of fun to the staid,
unanimated world of programming.

Animation is a process by which an object on a screen changes its color, position, size, or
orientation over time. Android supports three types of animation: frame-by-frame animation,
which occurs when a series of frames is drawn one after the other at regular intervals; layout
animation, in which you animate views inside a container view such as lists and tables; and
view animation, in which you animate any general-purpose view. The latter two types fall into
the category of tweening animation, which involves the drawings in between the key drawings.
You accomplish this kind of animation by changing the intermediate values at regular inter-
vals and redrawing the surface. We will cover each type of animation using working examples
and in-depth analysis.

Frame-by-frame animation is the simplest of the three animation types, so we’ll cover
that one in this chapter’s first section. We’ll show you how it works, how to tell a story using it,
and how to use the AnimationDrawable class to execute the frames at a certain refresh rate. We
will present an example, with screenshots and code, in which you’ll animate an image of a ball
moving along the circumference of a circle.

In the second section we’ll cover layout animation, which is more involved than frame-
by-frame animation but still easier than view animation. We will talk about scale animation
(changing size), translate animation (changing position), rotate animation (changing orienta-
tion), and alpha animation (changing a color gradient). We will show you how to declare these
animations in an XML file and associate the animation IDs with a container view such as a list
box. As an example, you’ll apply a variety of animation transformations to a series of text items
in a list box. We will also cover interpolators, which define an animation’s rate of change, and
animation sets, which contain an aggregated set of individual animations.

In the last section on view animation, we will cover animating a view by changing the
transformation matrices. You’ll need a good understanding of transformation matrices to
grasp the material in this section, so we’ll provide several examples to illustrate their behavior.
Android also introduces the idea of a Camera to simulate 3D-like viewing capabilities by pro-
jecting a 2D view moving in 3D space. This section will illustrate both of these ideas by taking
a ListView and rotating it in 3D space.

197

15967ch06.indd 197 6/5/09 11:17:29 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 6 ■ UNVeIL ING 2D aNIMatION 198

Frame-by-Frame Animation
Frame-by-frame animation is the simple process of showing a series of images in succession at
quick intervals so that the end effect is that of an object moving. This is how movie or film pro-
jectors work. We’ll explore an example in which we’ll design an image and save that image as
a number of distinct images, where each one differs from the other slightly. Then we will take
the collection of those images and run them through the sample code to simulate animation.

Planning for Frame-by-Frame Animation
Before you start writing code, you first need to plan the animation sequence using a series of
drawings. As an example of this planning exercise, Figure 6-1 shows a set of same-sized circles
with a colored ball on each of the circles placed at a different position. You can take a series of
these pictures showing the circle at the same size and position but the colored ball at different
points along the circle’s border. Once you save seven or eight of these frames, you can use ani-
mation to show that the colored ball is moving around the circle.

66

66
66

Figure 6-1. Designing your animation before coding it

Give the image a base name of colored-ball. Then you can store eight of these images
in the /res/drawable subdirectory so that you can access them using their resource IDs. The
name of each image will have the pattern colored-ball-N, where N is the digit representing the
image number. When you are finished with the animation, you want it to look like Figure 6-2.

15967ch06.indd 198 6/5/09 11:17:29 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 6 ■ UNVeIL ING 2D aNIMatION 199

Figure 6-2. Frame-by-frame animation test harness

The primary area in this activity is used by the animation view. We have included a button
to start and stop the animation to observe its behavior. We have also included a debug scratch
pad at the top, so you can write any significant events to it as you experiment with this program.

Creating the Activity
Start by creating the basic XML layout file for our test-animation activity screen (see Listing 6-1).

Listing 6-1. XML Layout File for the Animation Test Harness

<?xml version="1.0" encoding="utf-8"?>
<!—filename: /res/layout/frame_animations_layout.xml -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<TextView android:id="@+id/textViewId1"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Debug Scratch Pad"
 />

15967ch06.indd 199 6/5/09 11:17:29 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 6 ■ UNVeIL ING 2D aNIMatION 200

<Button
 android:id="@+id/startFAButtonId"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Start Animation"
/>
<ImageView
 android:id="@+id/animationImage"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
</LinearLayout>

The first control is the debug-scratch text control, which is a simple TextView. You
then add a button to start and stop the animation. The last view is the ImageView, where
you will play the animation. Once you have the layout, create an activity to load this view
(see Listing 6-2).

Listing 6-2. Activity to Load the ImageView

public class FrameAnimationActivity extends Activity
{
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.frame_animations_layout);
 }
}

You will be able to run this activity from any menu item you might have in your current
application by executing the following code:

Intent intent = new Intent(inActivity,FrameAnimationActivity.class);
inActivity.startActivity(intent);

At this point, you will see an activity that looks like the one in Figure 6-3.

15967ch06.indd 200 6/5/09 11:17:29 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 6 ■ UNVeIL ING 2D aNIMatION 201

Figure 6-3. Frame-by-frame animation activity

Adding Animation to the Activity
Now that you have the activity and layout in place, we’ll show you how to add animation to
this sample. In Android, you accomplish frame-by-frame animation through a class in the
graphics package called AnimationDrawable. This class can take a list of Drawable resources
(like images) and render them at specified intervals. This class is really a thin wrapper around
the animation support provided by the basic Drawable class.

The Drawable class enables animation by asking its container or view to invoke a Runnable
class that essentially redraws the Drawable using a different set of parameters. Note that you
don’t need to know these internal implementation details to use the AnimationDrawable class.
But if your needs are more complex, you can look at the AnimationDrawable source code for
guidance in writing your own animation protocols.

To make use of the AnimationDrawable class, start with a set of Drawable resources placed
in the /res/drawable subdirectory. You will then construct an XML file that defines the list of
frames (see Listing 6-3).

15967ch06.indd 201 6/5/09 11:17:30 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 6 ■ UNVeIL ING 2D aNIMatION 202

Listing 6-3. XML File Defining the List of Frames to be Animated

<animation-list xmlns:android="http://schemas.android.com/apk/res/android"
 android:oneshot="false">
 <item android:drawable="@drawable/colored-ball1" android:duration="50" />
 <item android:drawable="@drawable/colored-ball2" android:duration="50" />
 <item android:drawable="@drawable/colored-ball3" android:duration="50" />
 <item android:drawable="@drawable/colored-ball4" android:duration="50" />
 <item android:drawable="@drawable/colored-ball5" android:duration="50" />
 <item android:drawable="@drawable/colored-ball6" android:duration="50" />
 <item android:drawable="@drawable/colored-ball7" android:duration="50" />
 <item android:drawable="@drawable/colored-ball8" android:duration="50" />
 </animation-list>

Each frame points to one of the colored-ball images you have assembled through their
resource IDs. The animation-list tag essentially gets converted into an AnimationDrawable
object representing the collection of images. You will then need to set this Drawable as a back-
ground resource for our ImageView in the sample. Assuming that the file name for this XML file
is frame_animation.xml and that it resides in the /res/drawable subdirectory, you can use the
following code to set the AnimationDrawable as the background of the ImageView:

view.setBackGroundResource(Resource.drawable.frame_animation);

With this code, Android realizes that the resource ID Resource.drawable.frame_animation
is an XML resource and accordingly constructs a suitable AnimationDrawable Java object for
it before setting it as the background. Once this is set, you can access this AnimationDrawable
object by doing a get on the view object like this:

Object backgroundObject = view.getBackground();
AnimationDrawable ad = (AnimationDrawable)backgroundObject;

Once you have the AnimationDrawable, you can use the start() and stop() methods
of this object to start and stop the animation. Here are two other important methods on
this object:

setOneShot();
addFrame(drawable, duration);

The setOneShot() method runs the animation once and then stops. The addFrame()
method adds a new frame using a Drawable object and sets its display duration. The function-
ality of the addFrame() method resembles that of the XML tag android:drawable.

Put this all together to get the complete code for our frame-by-frame animation test
harness (see Listing 6-4).

15967ch06.indd 202 6/5/09 11:17:30 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 6 ■ UNVeIL ING 2D aNIMatION 203

Listing 6-4. Complete Code for the Frame-by-Frame Animation Test Harness

public class FrameAnimationActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.frame_animations_layout);
 this.setupButton();
 }

 private void setupButton()
 {
 Button b = (Button)this.findViewById(R.id.startFAButtonId);
 b.setOnClickListener(
 new Button.OnClickListener(){
 public void onClick(View v)
 {
 parentButtonClicked(v);
 }
 });
 }
 private void parentButtonClicked(View v)
 {
 animate();
 }
 private void animate()
 {
 ImageView imgView = (ImageView)findViewById(R.id.imageView);
 imgView.setVisibility(ImageView.VISIBLE);
 imgView.setBackgroundResource(R.drawable.frame_animation);

 AnimationDrawable frameAnimation =
 (AnimationDrawable) imgView.getBackground();

 if (frameAnimation.isRunning())
 {
 frameAnimation.stop();
 }
 else
 {
 frameAnimation.stop();
 frameAnimation.start();
 }
 }
}//eof-class

15967ch06.indd 203 6/5/09 11:17:30 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 6 ■ UNVeIL ING 2D aNIMatION 204

The animate() method locates the ImageView in the current activity and sets its back-
ground to the AnimationDrawable identified by the resource R.drawable.frame_animation.
The code then retrieves this object and performs the animation. The start/stop button is set
up such that if the animation is running, clicking the button will stop it; if the animation is in
a stopped state, clicking the button will start it.

As a note, if you set the OneShot parameter of the animation list to true, then the anima-
tion will stop after executing once. However, there is no clear-cut way to know when that
happens. Although the animation ends when it plays the last picture, you have no callback
telling you when it finishes. Because of this, there isn’t a direct way to invoke another action
in response to the completed animation.

That drawback aside, you can bring great visual effects to bear by drawing a number of
images in succession through the simple process of frame-by-frame animation.

Layout Animation
As you have seen, frame-by-frame animation is a quick and dirty way to add visual effects to
your Android applications. Layout animation is almost as simple. You’ll use layout animation
with the ListView and GridView, which are the two most commonly used controls in Android.
Specifically, you’ll use layout animation to add visual effects to the way each item in a ListView
or GridView is displayed. In fact, you can use this type of animation on all controls derived from
a ViewGroup.

As we pointed out at the beginning of this chapter, layout animation works by applying
tweening principles to each view that is part of the layout being animated. Tweening is a pro-
cess in which a number of the view’s properties are changed at regular intervals. Every view in
Android has a matrix that maps the view to the screen. By changing this matrix in a number of
ways, you can accomplish scaling, rotation, and movement (translation) of the view. By chang-
ing the transparency of the view from 0 to 1, for example, you can accomplish what is called an
alpha animation.

In this section, we will offer a simple test harness to learn, test, and experiment with
layout-animation capabilities. We will show you how to attach a tweening animation to
a ListView. We will also introduce and explain the idea of interpolators and their role in
animation. The SDK documentation on interpolators is a bit vague, so we will clarify interpo-
lator behavior by showing you relevant source code. We will also cover something called
a LayoutAnimationController that mediates between an animation and a ViewGroup.

Basic Tweening Animation Types
Before we design the test harness to apply the various tweening animations, we’ll give you
some detail on the basic types of tweening animation:

	 •	 Scale animation: You use this type of animation to make a view smaller or larger either
on the x axis or on the y axis. You can also specify the pivot point around which you
want the animation to take place.

	 •	 Rotate animation: You use this to rotate a view around a pivot point by a certain
number of degrees.

	 •	 Translate animation: You use this to move a view along the x axis or the y axis.

	 •	 Alpha animation: You use this to change the transparency of a view.

15967ch06.indd 204 6/5/09 11:17:30 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 6 ■ UNVeIL ING 2D aNIMatION 205

All of the parameter values associated with these animations have a from and a to flavor
because you must specify the starting values and ending values for when the animation starts
and ends. Each animation also allows duration as an argument and a time interpolator as an
argument. We’ll cover interpolators at the end of this section on layout animation, but for
now, know that interpolators determine the rate of change of the animated argument during
animation.

You’ll define these animations as XML files in the /res/anim subdirectory. You will see
this amply illustrated in the test harness, but Listing 6-5 shows a quick sample to cement your
understanding of how these animations are described.

Listing 6-5. A Scale Animation Defined in an XML File at /res/anim/scale.xml

<set xmlns:android="http://schemas.android.com/apk/res/android"
android:interpolator="@android:anim/accelerate_interpolator">
 <scale
 android:fromXScale="1"
 android:toXScale="1"
 android:fromYScale="0.1"
 android:toYScale="1.0"
 android:duration="500"
 android:pivotX="50%"
 android:pivotY="50%"
 android:startOffset="100" />
</set>

Once you have this file, you can associate this animation with a layout; this means that
each view in the layout will go through this animation. The test harness goes through this pro-
cess in much more detail, as you’ll see shortly.

This is a good place to point out that each of these animations is represented as a Java
class in the android.view.animation package. The Java documentation for each of these
classes describes not only their Java methods, but also the allowed XML arguments for each
type of animation.

Now that you have enough background on animation types to understand layout anima-
tion, let’s proceed to the design of the layout-animation test harness.

Planning the Layout-Animation Test Harness
You can test all the layout-animation concepts we’ve covered using a simple ListView set in an
activity. Once you have a ListView, you can attach an animation to it so that each list item will
go through that animation.

Assume you have a scale animation that makes a view grow from 0 to its original size on
the y axis. You can attach that animation to a ListView. When this happens, the ListView will
animate each item in that list using this animation. You can set some additional parameters
that extend the basic animation, such as animating the list from top to bottom or from bot-
tom to top. You specify these parameters through an intermediate class that acts as a mediator
between the individual animation and the list.

You can define both the individual animation and the mediator in XML files in the /res/
anim subdirectory. Once you have the mediator XML file, you can use that file as an input to
the ListView in its own XML layout definition. This will become clear to you when you see the

15967ch06.indd 205 6/5/09 11:17:30 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 6 ■ UNVeIL ING 2D aNIMatION 206

code listings we’ll provide in the rest of this section. Once you have this basic setup working,
you can start altering the individual animations to see how they impact the ListView display.

Our examples will cover scale animation, translate animation, rotate animation, alpha
animation, and a combination of translate and alpha animation. If this high-level plan seems a
bit vague, just hang tight; by the end of this section, you will know what we are talking about.

Before we embark on this exercise, you should see what the ListView will look like after
the animation completes (see Figure 6-4).

Figure 6-4. The end result of animating the ListView

Creating the Activity and the ListView
Start by creating an XML layout for the ListView in Figure 6-4 so you can load that layout in a
basic activity. Listing 6-6 contains a simple layout with a ListView in it. You will need to place
this file in the /res/layout subdirectory. Assuming the file name is list_layout.xml, your
complete file will reside in /res/layout/list_layout.xml.

15967ch06.indd 206 6/5/09 11:17:30 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 6 ■ UNVeIL ING 2D aNIMatION 207

Listing 6-6. XML Layout File Defining the ListView

<?xml version="1.0" encoding="utf-8"?>
<!-- filename: /res/layout/list_layout.xml -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >

 <ListView
 android:id="@+id/list_view_id"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 />
</LinearLayout>

Listing 6-6 shows a simple LinearLayout with a single ListView in it. However, we should
mention one point about the ListView definition. If you happen to work through the Notepad
examples and other Android examples, you’ll see that the ID for a ListView is usually specified
as @android:id/list. As we discussed in Chapter 3, the resource reference @android:id/list
points to an ID that is predefined in the android namespace. The question is, when do we use
this android:id vs. our own ID such as @+id/list_view_id?

You will need to use @android:id/list only if the activity is a ListActivity. A ListActivity
assumes that a ListView identified by this predetermined ID is available for loading. In this
case, you’re using a general-purpose activity rather than a ListActivity, and you are going to
explicitly populate the ListView yourself. As a result, there are no restrictions on the kind of ID
you can allocate to represent this ListView. However, you do have the option of also using
@android:id/list because it doesn’t conflict with anything as there is no ListActivity in sight.

This surely is a digression, but it’s worth noting as you create your own ListViews outside
a ListActivity. Now that you have the layout needed for the activity, you can write the code
for the activity to load this layout file so you can generate your UI (see Listing 6-7).

Listing 6-7. Code for the Layout-Animation Activity

public class LayoutAnimationActivity extends Activity
{
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.list_layout);
 setupListView();
 }

15967ch06.indd 207 6/5/09 11:17:30 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 6 ■ UNVeIL ING 2D aNIMatION 208

 private void setupListView()
 {
 String[] listItems = new String[] {
 "Item 1", "Item 2", "Item 3",
 "Item 4", "Item 5", "Item 6",
 };

 ArrayAdapter listItemAdapter =
 new ArrayAdapter(this
 ,android.R.layout.simple_list_item_1
 ,listItems);
 ListView lv = (ListView)this.findViewById(R.id.list_view_id);
 lv.setAdapter(listItemAdapter);
 }
}

Some of this code in Listing 6-7 is obvious, and some is not. The first part of the code sim-
ply loads the view based on the generated layout ID R.layout.list_layout. Our goal is to take
the ListView from this layout and populate it with six text items. These text items are loaded
up into an array. You’ll need to set a data adapter into a ListView so that the ListView can
show those items.

To create the necessary adapter, you will need to specify how each item will be laid out
when the list is displayed. You specify the layout by using a predefined layout in the base
Android framework. In this example, this layout is specified as

android.R.layout.simple_list_item_1

The other possible view layouts for these items include

simple_list_item_2
simple_list_item_checked
simple_list_item_multiple_choice
simple_list_item_single_choice

You can refer to the Android documentation to see how each of these layouts look and
behave. You can now invoke this activity from any menu item in your application using the
following code:

Intent intent = new Intent(inActivity,LayoutAnimationActivity.class);
inActivity.startActivity(intent);

However, as with any other activity invocation, you will need to register the
LayoutAnimationActivity in the AndroidManifest.xml file for the preceding intent
invocation to work. Here is the code for it:

<activity android:name=". LayoutAnimationActivity"
 android:label="View Animation Test Activity"/>

15967ch06.indd 208 6/5/09 11:17:30 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 6 ■ UNVeIL ING 2D aNIMatION 209

Animating the ListView
Now that you have the test harness ready (see Listings 6-6 and 6-7), you’ll learn how to apply
scale animation to this ListView. Take a look at how this scale animation is defined in an XML
file (see Listing 6-8).

Listing 6-8. Defining Scale Animation in an XML File

<set xmlns:android="http://schemas.android.com/apk/res/android"
android:interpolator="@android:anim/accelerate_interpolator">
 <scale
 android:fromXScale="1"
 android:toXScale="1"
 android:fromYScale="0.1"
 android:toYScale="1.0"
 android:duration="500"
 android:pivotX="50%"
 android:pivotY="50%"
 android:startOffset="100" />
</set>

These animation-definition files reside in the /res/anim subdirectory. Let’s break down
these XML attributes into plain English. The from and to scales point to the starting and end-
ing magnification factors. Here, the magnification starts at 1 and stays at 1 on the x axis. This
means the list items will not grow or shrink on the x axis. On the y axis, however, the mag-
nification starts at 0.1 and grows to 1.0. In other words, the object being animated starts at
one-tenth of its normal size and then grows to reach its normal size. The scaling operation will
take 500 milliseconds to complete. The center of action is halfway (50%) between x and y. The
startOffset value refers to the number of milliseconds to wait before starting the animation.

The parent node of scale animation points to an animation set that could allow more than
one animation to be in effect. We will cover one of those examples as well. But for now, there is
only one animation in this set.

Name this file scale.xml and place it in the /res/anim subdirectory. You are not yet ready
to set this animation XML as an argument to the ListView; the ListView first requires another
XML file that acts as a mediator between itself and the animation set. The XML file that
describes that mediation is shown in Listing 6-9.

Listing 6-9. Definition for a Layout-Controller XML File

<layoutAnimation xmlns:android="http://schemas.android.com/apk/res/android"
 android:delay="30%"
 android:animationOrder="reverse"
 android:animation="@anim/scale" />

You will also need to place this XML file in the /res/anim subdirectory. For our example,
assume that the file name is list_layout_controller. Once you look at this definition, you can
see why this intermediate file is necessary. This XML file specifies that the animation in the list

15967ch06.indd 209 6/5/09 11:17:30 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 6 ■ UNVeIL ING 2D aNIMatION 210

should proceed in reverse, and that the animation for each item should start with a 30 percent
delay with respect to the total animation duration. This XML file also refers to the individual
animation file, scale.xml. Also notice that instead of the file name, the code uses the resource
reference @anim/scale.

Now that you have the necessary XML input files, we’ll show you how to update the
ListView XML definition to include this animation XML as an argument. First, review the
XML files you have so far:

// individual scale animation
/res/anim/scale.xml

// the animation mediator file
/res/anim/list_layout_controller.xml

// the activity view layout file
/res/layout/list_layout.xml

With these files in place, you need to modify the XML layout file list_layout.xml to have
the ListView point to the list_layout_controller.xml file (see Listing 6-10).

Listing 6-10. The Updated Code for the list_layout.xml File

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <ListView
 android:id="@+id/list_view_id"
 android:persistentDrawingCache="animation|scrolling"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layoutAnimation="@anim/list_layout_controller" />
 />
</LinearLayout>

The changed lines are highlighted in bold. android:layoutAnimation is the key tag,
which points to the mediating XML file that defines the layout controller using the XML tag
layoutAnimation (see Listing 6-9). The layoutAnimation tag, in turn, points to the individual
animation, which in this case is the scale animation defined in scale.xml. Android also recom-
mends setting the persistentDrawingCache tag to optimize for animation and scrolling. Refer
to the Android SDK documentation for more details on this tag.

When you update the list_layout.xml file as shown in Listing 6-10, Eclipse’s ADT plug-in
will automatically recompile the package taking this change into account. If you were to run
the application now, you would see the scale animation take effect on the individual items. We
have set the duration to 500 milliseconds so that you can observe the scale change clearly as
each item is drawn.

15967ch06.indd 210 6/5/09 11:17:30 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 6 ■ UNVeIL ING 2D aNIMatION 211

Now you’re in a position to experiment with different animation types. You’ll try alpha
animation next. To do this, create a file called /res/anim/alpha.xml and populate it with the
content from Listing 6-11.

Listing 6-11. The alpha.xml File to Test Alpha Animation

<alpha xmlns:android="http://schemas.android.com/apk/res/android"
 android:interpolator="@android:anim/accelerate_interpolator"
 android:fromAlpha="0.0" android:toAlpha="1.0" android:duration="1000" />

Alpha animation is responsible for controlling the fading of color. In this example, you are
asking the alpha animation to go from invisible to full color in 1000 milliseconds, or 1 second.
Make sure the duration is 1 second or longer; otherwise, the color change is hard to notice.

Every time you want to change the animation of an individual item like this, you will need
to change the mediator XML file (see Listing 6-9) to point to this new animation file. Here is
how to change the animation from scale animation to alpha animation:

<layoutAnimation xmlns:android="http://schemas.android.com/apk/res/android"
 android:delay="30%"
 android:animationOrder="reverse"
 android:animation="@anim/alpha" />

The changed line in the layoutAnimation XML file is highlighted. Let us now try an anima-
tion that combines a change in position with a change in color gradient. Listing 6-12 shows the
sample XML for this animation.

Listing 6-12. Combining Translate and Alpha Animations Through an Animation Set

<set xmlns:android="http://schemas.android.com/apk/res/android"
android:interpolator="@android:anim/accelerate_interpolator">
 <translate android:fromYDelta="-100%" android:toYDelta="0"
android:duration="500" />
 <alpha android:fromAlpha="0.0" android:toAlpha="1.0"
android:duration="500" />
</set>

Notice how we have specified two animations in the animation set. The translate anima-
tion will move the text from top to bottom in its currently allocated display space. The alpha
animation will change the color gradient from invisible to visible as the text item descends into
its slot. The duration setting of 500 will allow the user to perceive the change in a comfortable
fashion. Of course, you will have to change the layoutAnimation mediator XML file again with
a reference to this file name. Assuming the file name for this combined animation is /res/
anim/translate-alpha.xml, your layoutAnimation XML file will look like this:

<layoutAnimation xmlns:android="http://schemas.android.com/apk/res/android"
 android:delay="30%"
 android:animationOrder="reverse"
 android:animation="@anim/translate-alpha" />

Let us see now how to use rotate animation (see Listing 6-13).

15967ch06.indd 211 6/5/09 11:17:30 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 6 ■ UNVeIL ING 2D aNIMatION 212

Listing 6-13. Rotate Animation XML File

<rotate xmlns:android="http://schemas.android.com/apk/res/android"
 android:interpolator="@android:anim/accelerate_interpolator"
 android:fromDegrees="0.0"
 android:toDegrees="360"
 android:pivotX="50%"
 android:pivotY="50%"
 android:duration="500" />

The code in Listing 6-13 will spin each text item in the list one full circle around the mid-
point of the text item. The duration of 500 milliseconds is a good amount of time for the user to
perceive the rotation. As before, to see this effect you must change the layout-controller XML
file and the ListView XML layout file and then rerun the application.

Now we’ve covered the basic concepts in layout animation, where we start with a simple
animation file and associate it with a ListView through an intermediate layoutAnimation XML
file. That’s all you need to do to see the animated effects. However, we need to talk about one
more thing with regard to layout animation: interpolators.

Using Interpolators
Interpolators tell an animation how a certain property, such as a color gradient, changes over
time: Will it change in a linear fashion, or in an exponential fashion? Will it start quickly, but
slow down toward the end? Consider the alpha animation that we introduced in Listing 6-11:

<alpha xmlns:android="http://schemas.android.com/apk/res/android"
 android:interpolator="@android:anim/accelerate_interpolator"
 android:fromAlpha="0.0" android:toAlpha="1.0" android:duration="1000" />

The animation identifies the interpolator it wants to use—the accelerate_interpolator,
in this case. There is a corresponding Java object that defines this interpolator. Also, note that
we’ve specified this interpolator as a resource reference. This means there must be a file cor-
responding to the anim/accelerate_interpolator that describes what this Java object looks
like and what additional parameters it might take. That indeed is the case. Look at the XML file
definition for @android:anim/accelerate_interpolator:

<accelerateInterpolator
 xmlns:android="http://schemas.android.com/apk/res/android"
 factor="1" />

You can see this XML file in the following subdirectory within the Android package:

/res/anim/accelerate_interpolator.xml

The accelerateInterpolator XML tag corresponds to a Java object with this name:

android.view.animation.AccelerateInterpolator

You can look up the Java documentation for this class to see what XML tags are available.
This interpolator’s goal is to provide a multiplication factor given a time interval based on a
hyperbolic curve. The source code for the interpolator illustrates this:

15967ch06.indd 212 6/5/09 11:17:30 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 6 ■ UNVeIL ING 2D aNIMatION 213

public float getInterpolation(float input)
{
 if (mFactor == 1.0f)
 {
 return (float)(input * input);
 }
 else
 {
 return (float)Math.pow(input, 2 * mFactor);
 }
}

Every interpolator implements this getInterpolation method differently. In this case, if
the interpolator is set up so that the factor is 1.0, it will return the square of the factor. Oth-
erwise, it will return a power of the input that is further scaled by the factor. So if the factor is
1.5, then you will see a cubic function instead of a square function.

The supported interpolators include

AccelerateDecelerateInterpolator
AccelerateInterpolator
CycleInterpolator
DecelerateInterpolator
LinearInterpolator

You can find the behavior of these interpolators described at the following URL:

http://code.google.com/android/reference/android/view/animation/package-summary.html

The Java documentation for each of these classes also points out the XML tags available to
control them.

This concludes our section on layout animation. We will now move to the third section on
view animation, in which we’ll discuss animating a view programmatically.

View Animation
Now that you’re familiar with frame-by-frame animation and layout animation, you’re ready
to tackle view animation—the most complex of the three animation types. View animation
allows you to animate any arbitrary view by manipulating the transformation matrix that is in
place for displaying the view.

We will start this section by giving you a brief introduction to view animation. We will
then show you the code for a test harness to experiment with view animation, followed by a
few view-animation examples. Then we’ll explain how you can use the Camera object in asso-
ciation with view animation. (This Camera has nothing to do with the physical camera on the
device; it’s purely a graphics concept.) Finally, we’ll give you an in-depth look at working with
transformation matrices.

15967ch06.indd 213 6/5/09 11:17:30 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 6 ■ UNVeIL ING 2D aNIMatION 214

Understanding View Animation
When a view is displayed on a presentation surface in Android, it goes through a transformation
matrix. In graphics applications, you use transformation matrices to transform a view in some
way. The process involves taking the input set of pixel coordinates and color combinations and
translating them into a new set of pixel coordinates and color combinations. At the end of a
transformation, you will see an altered picture in terms of size, position, orientation, or color.

You can achieve all of these transformations mathematically by taking the input set of
coordinates and multiplying them in some manner using a transformation matrix to arrive at a
new set of coordinates. By changing the transformation matrix, you can impact how a view will
look. A matrix that doesn’t change the view when you multiply by it is called an identity matrix.
You typically start with an identity matrix and apply a series of transformations involving size,
position, and orientation. You then take the final matrix and use that matrix to draw the view.

Android exposes the transformation matrix for a view by allowing you to register an ani-
mation object with that view. The animation object will have a callback that lets it obtain the
current matrix for a view and change it in some manner to arrive at a new view. We will go
through this process in this section.

Let’s start by planning an example for animating a view. You’ll begin with an activity
where you’ll place a ListView with a few items, similar to the way you began the example in the
“Layout Animation” section. You will then create a button at the top of the screen to start the
ListView animation when clicked (see Figure 6-5). Both the button and the ListView appear,
but nothing has been animated yet. You’ll use the button to trigger the animation.

Figure 6-5. The view-animation activity

15967ch06.indd 214 6/5/09 11:17:30 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 6 ■ UNVeIL ING 2D aNIMatION 215

When you click the Start Animation button in this example, you want the view to start
small in the middle of the screen and gradually become bigger until it consumes all the space
that is allocated for it. We’ll show you how to write the code to make this happen. Listing 6-14
shows the XML layout file that you can use for the activity.

Listing 6-14. XML Layout File for the View-Animation Activity

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is at /res/layout/list_layout.xml -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<Button
 android:id="@+id/btn_animate"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Start Animation"
/>
<ListView
 android:id="@+id/list_view_id"
 android:persistentDrawingCache="animation|scrolling"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 />
</LinearLayout>

Notice that the file location and the file name are embedded at the top of the XML file for
your reference. This layout has two parts: the first is the button named btn_animate to animate
a view, and the second is the ListView, which is named list_view_id.

Now that you have the layout for the activity, you can create the activity to show the view
and set up the Start Animation button (see Listing 6-15).

Listing 6-15. Code for the View-Animation Activity, Before Animation

public class ViewAnimationActivity extends Activity {

 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.list_layout);
 setupListView();
 this.setupButton();
 }

15967ch06.indd 215 6/5/09 11:17:30 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 6 ■ UNVeIL ING 2D aNIMatION 216

 private void setupListView()
 {
 String[] listItems = new String[] {
 "Item 1", "Item 2", "Item 3",
 "Item 4", "Item 5", "Item 6",
 };

 ArrayAdapter listItemAdapter =
 new ArrayAdapter(this
 ,android.R.layout.simple_list_item_1
 ,listItems);
 ListView lv = (ListView)this.findViewById(R.id.list_view_id);
 lv.setAdapter(listItemAdapter);
 }
 private void setupButton()
 {
 Button b = (Button)this.findViewById(R.id.btn_animate);
 b.setOnClickListener(
 new Button.OnClickListener(){
 public void onClick(View v)
 {
 //animateListView();
 }
 });
 }
}

The code for the view-animation activity in Listing 6-15 closely resembles the code for
the layout-animation activity in Listing 6-7. We have similarly loaded the view and set up the
ListView to contain six text items. We’ve set up the button in such a way that it would call
animateListView() when clicked. But for now, comment out that part until you get this basic
example running.

You can invoke this activity as soon as you register it in the AndroidManifest.xml file:

<activity android:name=".ViewAnimationActivity"
 android:label="View Animation Test Activity">

Once this registration is in place, you can invoke this view-animation activity from any
menu item in your application by executing the following code:

Intent intent = new Intent(this, ViewAnimationActivity.class);
startActivity(intent);

When you run this program, you will see the UI as laid out in Figure 6-5.

Adding Animation
Our aim in this example is to add animation to the ListView shown in Figure 6-5. To do that,
you need a class that derives from android.view.animation.Animation. You then need to over-
ride the applyTransformation method to modify the transformation matrix. Call this derived

15967ch06.indd 216 6/5/09 11:17:30 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 6 ■ UNVeIL ING 2D aNIMatION 217

class ViewAnimation. Once you have the ViewAnimation class, you can do something like this on
the ListView class:

 ListView lv = (ListView)this.findViewById(R.id.list_view_id);
 lv.startAnimation(new ViewAnimation());

Let us go ahead and show you the source code for ViewAnimation and discuss the kind of
animation we want to accomplish (see Listing 6-16).

Listing 6-16. Code for the ViewAnimation Class

public class ViewAnimation extends Animation
{
 public ViewAnimation2(){}

 @Override
 public void initialize(int width, int height, int parentWidth,
 int parentHeight)
 {
 super.initialize(width, height, parentWidth, parentHeight);
 setDuration(2500);
 setFillAfter(true);
 setInterpolator(new LinearInterpolator());
 }
 @Override
 protected void applyTransformation(float interpolatedTime, Transformation t)
 {
 final Matrix matrix = t.getMatrix();
 matrix.setScale(interpolatedTime, interpolatedTime);
 }
}

The initialize method is a callback method that tells us about the dimensions of the
view. This is also a place to initialize any animation parameters you might have. In this exam-
ple, we have set the duration to be 2500 milliseconds (2.5 seconds). We have also specified
that we want the animation effect to remain intact after the animation completes by setting
FillAfter to true. Plus, we’ve indicated that the interpolator is a linear interpolator, meaning
that the animation changes in a gradual manner from start to finish. All of these properties
come from the base android.view.animation.Animation class.

The main part of the animation occurs in the applyTransformation method. The Android
framework will call this method again and again to simulate animation. Every time Android
calls the method, interpolatedTime has a different value. This parameter changes from 0 to
1 depending on where you are in the 2.5-second duration that you set during initialization.
When interpolatedTime is 1, you are at the end of the animation.

Our goal, then, is to change the transformation matrix that is available through the trans-
formation object called t in the applyTransformation method. You will first get the matrix and
change something about it. When the view gets painted, the new matrix will take effect. You
can find the kinds of methods available on the Matrix object by looking up the API documen-
tation for android.graphics.Matrix:

15967ch06.indd 217 6/5/09 11:17:31 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 6 ■ UNVeIL ING 2D aNIMatION 218

http://code.google.com/android/reference/android/graphics/Matrix.html

In Listing 6-16, here is the code that changes the matrix:

matrix.setScale(interpolatedTime, interpolatedTime);

The setScale method takes two parameters: the scaling factor in the x direction and the
scaling factor in the y direction. Because the interpolatedTime goes between 0 and 1, you can
use that value directly as the scaling factor. So when you start the animation, the scaling factor
is 0 in both x and y directions. Halfway through the animation, this value will be 0.5 in both x
and y directions. At the end of the animation, the view will be at its full size because the scaling
factor will be 1 in both x and y directions. The end result of this animation is that the ListView
starts out tiny and grows into full size.

Listing 6-17 shows the complete source code for the ViewAnimationActivity that includes
the animation.

Listing 6-17. Code for the View-Animation Activity, Including Animation

public class ViewAnimationActivity extends Activity {

 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.list_layout);
 setupListView();
 this.setupButton();
 }
 private void setupListView()
 {
 String[] listItems = new String[] {
 "Item 1", "Item 2", "Item 3",
 "Item 4", "Item 5", "Item 6",
 };

 ArrayAdapter listItemAdapter =
 new ArrayAdapter(this
 ,android.R.layout.simple_list_item_1
 ,listItems);
 ListView lv = (ListView)this.findViewById(R.id.list_view_id);
 lv.setAdapter(listItemAdapter);
 }

15967ch06.indd 218 6/5/09 11:17:31 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 6 ■ UNVeIL ING 2D aNIMatION 219

 private void setupButton()
 {
 Button b = (Button)this.findViewById(R.id.btn_animate);
 b.setOnClickListener(
 new Button.OnClickListener(){
 public void onClick(View v)
 {
 animateListView();
 }
 });
 }
 private void animateListView()
 {
 ListView lv = (ListView)this.findViewById(R.id.list_view_id);
 lv.startAnimation(new ViewAnimation());
 }
}

When you run the code in Listing 6-17, you will notice something odd. Instead of uni-
formly growing larger from the middle of the screen, the ListView grows larger from the
top-left corner. The reason is that the origin for the matrix operations is at the top-left cor-
ner. To get the desired effect, you first have to move the whole view so that the view’s center
matches the animation center (top-left). Then you apply the matrix and move the view back
to the previous center.

Here’s the code for doing this:

 final Matrix matrix = t.getMatrix();
 matrix.setScale(interpolatedTime, interpolatedTime);
 matrix.preTranslate(-centerX, -centerY);
 matrix.postTranslate(centerX, centerY);

The preTranslate and postTranslate methods set up a matrix before the scale operation
and after the scale operation. This is equivalent to making three matrix transformations in tan-
dem. The code

 matrix.setScale(interpolatedTime, interpolatedTime);
 matrix.preTranslate(-centerX, -centerY);
 matrix.postTranslate(centerX, centerY);

is equivalent to

move to a different center
scale it
move to the original center

15967ch06.indd 219 6/5/09 11:17:31 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 6 ■ UNVeIL ING 2D aNIMatION 220

Here is the code for the transformation method that will give us the desired effect:

protected void applyTransformation(float interpolatedTime, Transformation t)
{
 final Matrix matrix = t.getMatrix();
 matrix.setScale(interpolatedTime, interpolatedTime);
 matrix.preTranslate(-centerX, -centerY);
 matrix.postTranslate(centerX, centerY);
}

You will see this pattern of pre and post applied again and again. You can also accomplish
this result using other methods on the Matrix class, but this technique is the most common—
plus, it’s succinct. We will, however, cover these other methods toward the end of this section.

More important, the Matrix class allows you not only to scale a view, but also to move it
around through translate methods and change its orientation through rotate methods. You
can experiment with these methods and see what the resulting animation looks like. In fact,
the animations presented in the preceding “Layout Animation” section are all implemented
internally using the methods on this Matrix class.

Using Camera to Provide Depth Perception in 2D
The graphics package in Android provides another animation-related—or more accurately,
transformation-related—class called Camera. You can use this class to provide depth percep-
tion by projecting a 2D image moving in 3D space onto a 2D surface. For example, you can
take our ListView and move it back from the screen by 10 pixels along the z axis and rotate it
by 30 degrees around the y axis. Here is an example of manipulating the matrix using a Camera:

...
Camera camera = new Camera();
..
protected void applyTransformation(float interpolatedTime, Transformation t)
{
 final Matrix matrix = t.getMatrix();
 camera.save();
 camera.translate(0.0f, 0.0f, (1300 - 1300.0f * interpolatedTime));
 camera.rotateY(360 * interpolatedTime);
 camera.getMatrix(matrix);

 matrix.preTranslate(-centerX, -centerY);
 matrix.postTranslate(centerX, centerY);
 camera.restore();
}

This code animates the ListView by first placing the view 1300 pixels back on the z axis
and then bringing it back to the plane where the z coordinate is 0. While doing this, the code
also rotates the view from 0 degrees to 360 degrees around the y axis. Let’s see how the code
relates to this behavior by looking at the following method:

camera.translate(0.0f, 0.0f, (1300 - 1300.0f * interpolatedTime));

15967ch06.indd 220 6/5/09 11:17:31 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 6 ■ UNVeIL ING 2D aNIMatION 221

This method tells the camera object to translate the view such that when interpolatedTime
is 0 (at the beginning of the animation), the z value will be 1300. As the animation progresses,
the z value will get smaller and smaller until the end, when the interpolatedTime becomes 1
and the z value becomes 0.

The method camera.rotateY(360 * interpolatedTime) takes advantage of 3D rotation
around an axis by the camera. At the beginning of the animation, this value will be 0. At the end
of the animation, it will be 360.

The method camera.getMatrix(matrix) takes the operations performed on the Camera so
far and imposes those operations on the matrix that is passed in. Once the code does that, the
matrix has the translations it needs to get the end effect of having a Camera. Now the Camera is
out of the picture (no pun intended) because the matrix has all the operations embedded in
it. Then you do the pre and post on the matrix to shift the center and bring it back. At the end,
you set the Camera to its original state that was saved earlier.

When you plug this code into our example, you will see the ListView arriving from the
center of the view in a spinning manner toward the front of the screen, as we intended when
we planned our animation.

As part of our discussion about view animation, we showed you how to animate any
view by extending an Animation class and then applying it to a view. In addition to letting you
manipulate matrices (both directly and through a Camera class), the Animation class lets you
detect various stages in an animation. We will cover this in the next subsection.

Exploring the AnimationListener Class
Android uses a listener interface called AnimationListener to monitor animation events (see
Listing 6-18). You can listen to these animation events by implementing the AnimationListener
interface and setting that implementation against the Animation class implementation.

Listing 6-18. An Implementation of the AnimationListener Interface

public class ViewAnimationListener
implements Animation.AnimationListener {

 private ViewAnimationListener(){}

 public void onAnimationStart(Animation animation)
 {
 Log.d("Animation Example", "onAnimationStart");
 }
 public void onAnimationEnd(Animation animation)
 {
 Log.d("Animation Example", "onAnimationEnd");
 }
 public void onAnimationRepeat(Animation animation)
 {
 Log.d("Animation Example", "onAnimationRepeat");
 }
}

15967ch06.indd 221 6/5/09 11:17:31 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 6 ■ UNVeIL ING 2D aNIMatION 222

The ViewAnimationListener class just logs messages. You can update the animateListView
method in the view-animation example (see Listing 6-17) to take the animation listener into
account:

private void animateListView()
{
 ListView lv = (ListView)this.findViewById(R.id.list_view_id);
 ViewAnimation animation = new ViewAnimation();
 animation.setAnimationListener(new ViewAnimationListener()):
 lv.startAnimation(animation);
}

Some Notes on Transformation Matrices
As you have seen in this chapter, matrices are key to transforming views and animations. We
will now briefly explore some key methods of the Matrix class. These are the primary opera-
tions on a matrix:

matrix.reset();
matrix.setScale();
matrix.setTranslate()
matrix.setRotate();
matrix.setSkew();

The first operation resets a matrix to an identity matrix, which causes no change to the
view when applied. setScale is responsible for changing size, setTranslate is responsible for
changing position to simulate movement, and setRotate is responsible for changing orienta-
tion. setSkew is responsible for distorting a view.

You can concatenate matrices or multiply them together to compound the effect of indi-
vidual transformations. Consider the following example, where m1, m2, and m3 are identity
matrices:

m1.setScale();
m2.setTranlate()
m3.concat(m1,m2)

Transforming a view by m1 and then transforming the resulting view with m2 is equivalent
to transforming the same view by m3. Note that set methods replace the previous transforma-
tions, and that m3.concat(m1,m2) is different from m3.concat(m2,m1).

You have already seen the pattern used by preTranslate and postTranslate methods to
affect matrix transformation. In fact, pre and post methods are not unique to translate, and
you have versions of pre and post for every one of the set transformation methods. Ultimately,
a preTranslate such as m1.preTranslate(m2) is equivalent to

m1.concat(m2,m1)

In a similar manner, the method m1.postTranslate(m2) is equivalent to

m1.concat(m1,m2)

15967ch06.indd 222 6/5/09 11:17:31 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 6 ■ UNVeIL ING 2D aNIMatION 223

By extension, the code

matrix.setScale(interpolatedTime, interpolatedTime);
matrix.preTranslate(-centerX, -centerY);
matrix.postTranslate(centerX, centerY);

is equivalent to

Matrix matrixPreTranslate = new Matrix();
matrixPreTranslate.setTranslate(-centerX, -centerY);

Matrix matrixPostTranslate = new Matrix();
matrixPostTranslate.setTranslate(cetnerX, centerY);

matrix.concat(matrixPreTranslate,matrix);
matrix.postTranslate(matrix,matrixpostTranslate);

Summary
In this chapter, we showed you a fun way to enhance your UI programs by extending them
with animation capabilities. We covered all major types of animation supported by Android,
including frame-by-frame animation, layout animation, and view animation. We also covered
supplemental animation concepts such as interpolators and transformation matrices.

Now that you have this background, we encourage you to go through the API samples that
come with the Android SDK to examine the sample XML definitions for a variety of anima-
tions. We will also return to animation briefly in Chapters 10 and 13, when you’ll see how to
draw and animate using OpenGL.

But now we will turn our attention to services in Android. We’ll cover location-based ser-
vices and security in Chapter 7, and HTTP-related services in Chapter 8.

15967ch06.indd 223 6/5/09 11:17:31 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

C h a p t e r 7

exploring Security and
Location-Based Services

In this chapter, we are going to talk about Android’s application-security model and location-
based services. Although the two topics are disparate, you need to understand security prior to
working with location-based services.

The first part of the chapter discusses security, which is a fundamental part of the Android
Platform. In Android, security spans all phases of the application lifecycle—from design-time
policy considerations to runtime boundary checks. You’ll learn Android’s security architecture
and understand how to design secure applications.

The second part of the chapter concerns location-based services. Location-based ser-
vices comprise one of the more exciting pieces of the Android SDK. This portion of the SDK
provides APIs to let application developers display and manipulate maps, obtain real-time
device-location information, and take advantage of other exciting features. After you read this
section of the book, you’ll definitely be convinced that Android is truly amazing.

Let’s get started with the Android security model.

Understanding the Android Security Model
Security in Android spans the deployment and execution of the application. With respect to
deployment, Android applications have to be signed with a digital signature in order for you to
install them onto a device. With respect to execution, Android runs each application within a
separate process, each of which has a unique and permanent user ID (assigned at install time).
This places a boundary around the process and prevents one application from having direct
access to another’s data. Moreover, Android defines a declarative permission model that pro-
tects sensitive features (such as the contact list).

In the next several sections, we are going to discuss these topics. But before we get started,
let’s provide an overview of some of the security concepts that we’ll refer to later.

225

15967ch07.indd 225 6/5/09 11:17:06 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 7 ■ eXpLOrING SeCUrItY aND LOCatION-BaSeD SerVICeS 226

Overview of Security Concepts
As we said earlier, Android requires that applications be signed with a digital certificate. One
of the benefits of this requirement is that an application cannot be updated with a version that
was not published by the original author. If we publish an application, for example, then you
cannot update our application with your version (unless, of course, you somehow obtain our
certificate and the password associated with it). That said, what does it mean for an applica-
tion to be signed? And what is the process of signing an application?

You sign an application with a digital certificate. A digital certificate is an artifact that
contains information about you, such as your company name, address, and so on. A few
important attributes of a digital certificate include its signature and public/private key. A pub-
lic/private key is also called a key pair. Note that although you use digital certificates here to
sign .apk files, you can also use them for other purposes (such as encrypted communication).
You can obtain a digital certificate from a trusted certificate authority (CA) and/or generate
one yourself using tools such as the keytool, which we’ll discuss shortly. Digital certificates are
stored in keystores. A keystore contains a list of digital certificates, each of which has an alias
that you can use to refer to it in the keystore.

Signing an Android application requires three things: a digital certificate, an .apk file, and
a utility that knows how to apply the signature of the digital certificate to the .apk file. As you’ll
see, we use a free utility that is part of the Java Runtime Environment (JRE) distribution called
the keytool. This utility is a command-line tool that knows how to sign a .jar file with a digital
certificate.

Now let’s move on and talk about how you can sign an .apk file with a digital certificate.

Signing Applications for Deployment
In order to install an Android application onto a device, you first need to sign the Android
package (.apk file) with the digital signature of a certificate. The certificate, however, can be
self-signed—you do not need to purchase a certificate from a certificate authority such as
VeriSign.

Signing your application for deployment involves two steps. The first step is to generate a
certificate using the keytool (or similar tool). The second step involves using the jarsigner tool
(or similar tool) to sign the .apk file with the signature of the generated certificate. Note that
during development, the ADT plug-in for Eclipse takes care of signing your .apk file before
deploying onto the emulator. Moreover, the default certificate used for signing during devel-
opment cannot be used for production deployment onto a real device.

Generating a Self-Signed Certificate Using the Keytool
The keytool utility manages a database of private keys and their corresponding X.509 certifi-
cates (a standard for digital certificates). This utility ships with the JRE and resides under the
JRE bin directory.

15967ch07.indd 226 6/5/09 11:17:06 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 7 ■ eXpLOrING SeCUrItY aND LOCatION-BaSeD SerVICeS 227

In this section, we’ll show you how to generate a keystore with a single entry, which you’ll
later use to sign an Android .apk file. To generate a keystore entry, do the following:

 1. Create a folder to hold the keystore at c:\android\release\.

 2. Open a command window to the JRE bin directory and execute the keytool utility with
the parameters shown in Listing 7-1.

Listing 7-1. Generating a Keystore Entry Using the Keytool

keytool -genkey -v -keystore c:\android\release\release.keystore
-alias androidbook -storepass paxxword -keypass paxxword -keyalg RSA
-validity 14000

All of the arguments passed to the keytool are summarized in Table 7-1.

Table 7-1. Arguments Passed to the Keytool

Argument Description

genkey Tells the keytool to generate a public/private key pair.

v Tells the keytool to emit verbose output during key generation.

keystore Path to the keystore database (in this case, a file).

alias A unique name for the keystore entry. The alias is used later to refer to the keystore
entry.

storepass The password for the keystore.

keypass The password used to access the private key.

keyalg The algorithm.

validity The validity period.

The keytool will prompt you for the passwords listed in Table 7-1 if you do not provide
them on the command line. The command in Listing 7-1 will generate a keystore database
at c:\android\release\. The database will be a file named release.keystore. The validity
of the entry will be 14,000 days (or approximately 38 years)—which is a long time from now.
You should understand the reason for this. The Android documentation recommends that
you specify a validity period long enough to surpass the entire lifespan of the application,
which will include many updates to the application. It recommends that the validity be at least
25 years. Moreover, if you plan to publish the application on Android Market (http://www.
android.com/market/), your certificate will need to be valid through October 22, 2033.

Going back to the keytool, the argument alias is a unique name given to the entry in the
keystore database; you can later use this name to refer to the entry. When you run the keytool
command in Listing 7-1, keytool will ask you a few questions (see Figure 7-1) and then gener-
ate the keystore database and entry.

15967ch07.indd 227 6/5/09 11:17:06 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 7 ■ eXpLOrING SeCUrItY aND LOCatION-BaSeD SerVICeS 228

Figure 7-1. Additional questions asked by the keytool

Now you have a digital certificate that you can use to sign your .apk file. To sign an .apk
file with the certificate, you use the jarsigner tool. Here’s how to do that.

Using the Jarsigner tool to Sign the .apk File
The keytool in the previous section created a digital certificate, which is one of the parameters
to the jarsigner tool. The other parameter for the jarsigner is the actual Android package to
be signed. To generate an Android package, you need to use the “Export Unsigned Applica-
tion Package” utility in the ADT plug-in for Eclipse. You access the utility by right-clicking
an Android project in Eclipse, selecting Android Tools, and then selecting “Export Unsigned
Application Package.” Running the “Export Unsigned Application Package” utility will gener-
ate an .apk file that will not be signed with the debug certificate. To see how this works, run the
“Export Unsigned Application Package” utility on one of your Android projects and store the
generated .apk file at c:\android\release\myapp.apk.

With the .apk file and the keystore entry, run the jarsigner tool to sign the .apk file (see
Listing 7-2).

Listing 7-2. Using Jarsigner to Sign the .apk File

jarsigner -keystore c:\android\release\release.keystore -storepass paxxword
-keypass paxxword c:\android\release\myapp.apk androidbook

To sign the .apk file, you pass the location of the keystore, the keystore password, the pri-
vate-key password, the path to the .apk file, and the alias for the keystore entry. The jarsigner
will then sign the .apk file with the signature from the keystore entry. Note that the jarsigner
tool is an executable that ships with the JDK, in the bin directory—it is not packaged with the
JRE. To run the jarsigner tool, you will need to either open a command window to the JDK bin
directory or ensure that your JDK bin directory is on the system path.

As we pointed out earlier, Android requires that an application be signed with a digital
signature to prevent a malicious programmer from updating your application with his ver-
sion. For this to work, Android requires that updates to an application be signed with the same
signature as the original. If you sign the application with a different signature, Android treats
them as two different applications.

15967ch07.indd 228 6/5/09 11:17:06 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 7 ■ eXpLOrING SeCUrItY aND LOCatION-BaSeD SerVICeS 229

Once you have signed an .apk file, you can install it onto the emulator manually using the
adb tool. As an exercise, start the emulator and open a command window to the Android SDK
tools directory. Then run the adb tool with the install command:

adb install "PATH TO APK FILE GOES HERE"

Now let’s see how signing affects the process of updating an application.

Installing Updates to an application and Signing
Earlier we mentioned that a certificate has an expiration date and that Google recommends
you set expiration dates far into the future, to account for a lot of application updates. That
said, what happens if the certificate does expire? Would Android still run the application?
Fortunately, yes—Android tests the certificate’s expiration only at install time. Once your
application is installed, it will continue to run even if the certificate expires.

But what about updates? Unfortunately, you will not be able to update the application.
In other words, as Google suggests, you need to make sure the life of the certificate is long
enough to support the entire life of the application. If a certificate does expire, Android will
not install an update to the application. The only choice left will be for you to create another
application—an application with a different package name—and sign it with a new certificate.
So as you can see, it is critical for you to consider the expiration date of the certificate when
you generate it.

Now that you understand security with respect to deployment and installation, let’s move
on to runtime security in Android.

Performing Runtime Security Checks
Runtime security in Android happens at the process level and at the operation level. At the
process level, Android prevents one application from directly accessing another application’s
data. It does this by running each application within a different process and under a unique
and permanent user ID. At the operational level, Android defines a list of protected features
and resources. In order for your application to access this information, you have to add one or
more permission requests to your AndroidManifest.xml file. You can also define custom per-
missions with your application.

In the sections that follow, we will talk about process-boundary security and how to
declare and use predefined permissions. We will also discuss creating custom permissions and
enforcing them within your application. Let’s start by dissecting Android security at the pro-
cess boundary.

Understanding Security at the Process Boundary
Unlike your desktop environment where most of the applications run under the same user ID,
each Android application generally runs under its own unique ID. By running each application
under a different ID, Android creates an isolation boundary around each process. This pre-
vents one application from directly accessing another application’s data.

Although each process has a boundary around it, data sharing between applications is
obviously possible, but has to be explicit. In other words, to get data from another applica-
tion, you have to go through the components of that application. For example, you can query

15967ch07.indd 229 6/5/09 11:17:06 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 7 ■ eXpLOrING SeCUrItY aND LOCatION-BaSeD SerVICeS 230

a content provider of another application, you can invoke an activity in another application,
or—as you’ll see in Chapter 8—you can communicate with a service of another application. All
of these facilities provide methods for you to share information between applications, but they
do so in an explicit manner because you don’t access the underlying database, files, and so on.

Android’s security at the process boundary is clear and simple. Things get interesting
when we start talking about protecting resources (such as contact data), features (such as the
device’s camera), and our own components. To provide this protection, Android defines a per-
mission scheme. Let’s dissect that now.

Declaring and Using Permissions
Android defines a permission scheme meant to protect resources and features on the device.
For example, applications, by default, cannot access the contacts list, make phone calls, and so
on. To protect the user from malicious applications, Android requires applications to request
permissions if they need to use a protected feature or resource. As you’ll see shortly, permis-
sion requests go in the manifest file. At install time, the APK installer either grants or denies
the requested permissions based on the signature of the .apk file and/or feedback from the
user. If a permission is not granted, any attempt to execute or access the associated feature will
result in a permission failure.

Table 7-2 shows some commonly used features and the permissions they require. Note
that you are not yet familiar with all the features listed in Table 7-2, but you will see them later
(either in this chapter or subsequent chapters).

Table 7-2. Features and Resources, and the Permissions They Require

Feature/Resource Required Permission Description

Camera android.permission.CAMERA Enables you to access the device’s
camera.

Internet android.permission.INTERNET Enables you to make a network
connection.

User’s Contact
Data

android.permission.READ_CONTACTS
android.permission.WRITE_CONTACTS

Enables you to read from or write
to the user’s contact data.

User’s Calendar
Data

android.permission.READ_CALENDAR
android.permission.WRITE_CALENDAR

Enables you to read from or write
to the user’s calendar data.

Record Audio android.permission.RECORD_AUDIO Enables you to record audio.

GPS Location
Information

android.permission.ACCESS_FINE_
LOCATION

Enables you to access fine-
grained location information.
This includes GPS location infor-
mation.

WiFi Location
Information

android.permission.ACCESS_COARSE_
LOCATION

Enables you to access coarse-
grained location information.
This includes WiFi location infor-
mation.

Battery Information android.permission.BATTERY_STATS Enables you to obtain battery-
state information.

Bluetooth android.permission.BLUETOOTH Enables you to connect to paired
Bluetooth devices.

15967ch07.indd 230 6/5/09 11:17:06 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 7 ■ eXpLOrING SeCUrItY aND LOCatION-BaSeD SerVICeS 231

For a complete list of permissions, see http://developer.android.com/reference/
android/Manifest.permission.html.

Application developers can request permissions by adding entries to the AndroidManifest.
xml file. For example, Listing 7-3 asks to access the camera on the device, to read the list of
contacts, and to read the calendar.

Listing 7-3. Permissions in AndroidManifest.xml

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.android.app.permApp" >
 <uses-permission android:name="android.permission.CAMERA" />
 <uses-permission android:name="android.permission.READ_CONTACTS"/>
 <uses-permission android:name="android.permission.READ_CALENDAR" />
</manifest>

Note that you can either hand-code permissions in the AndroidManifest.xml file or use
the manifest editor. The manifest editor is wired up to launch when you open (double-click)
the manifest file. The manifest editor contains a drop-down list that has all of the permissions
preloaded to prevent you from making a mistake. As shown in Figure 7-2, you can access the
permissions list by selecting the Permissions tab in the manifest editor.

Figure 7-2. The Android manifest editor tool in Eclipse

You now know that Android defines a set of permissions that protects a set of features and
resources. Similarly, you can define, and enforce, custom permissions with your application.
Let’s see how that works.

15967ch07.indd 231 6/5/09 11:17:06 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 7 ■ eXpLOrING SeCUrItY aND LOCatION-BaSeD SerVICeS 232

Understanding and Using Custom Permissions
Android allows you to define custom permissions with your application. For example, if you
wanted to prevent certain users from starting one of the activities in your application, you
could do that by defining a custom permission. To use custom permissions, you first declare
them in your AndroidManifest.xml file. Once you’ve defined a permission, you can then refer
to it as part of your component definition. We’ll show you how this works.

Let’s create an application containing an activity that not everyone is allowed to start.
Instead, to start the activity, a user must have a specific permission. Once you have the appli-
cation with a privileged activity, you can then write a client that knows how to call the activity.

First create the project with the custom permission and activity. Open the Eclipse IDE and
select New ➤ New Project ➤ Android Project. This will open the “New Android Project” dialog
box. Enter CustomPermission as the project name, select the “Create new project in work-
space” radio button, and mark the “Use default location” check box. Enter com.cust.perm as
the package name, CustPermMainActivity as the activity name, and Custom Permission as
the application name. Click the Finish button to create the project. The generated project will
have the activity you just created, which will serve as the default (main) activity. Let’s also cre-
ate a so-called privileged activity—an activity that requires a special permission. In the Eclipse
IDE, go to the com.cust.perm package, create a class named PrivActivity, and copy the code
shown in Listing 7-4.

Listing 7-4. The PrivActivity Class

package com.cust.perm;

import android.app.Activity;
import android.os.Bundle;
import android.view.ViewGroup.LayoutParams;
import android.widget.LinearLayout;
import android.widget.TextView;

public class PrivActivity extends Activity
{

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 LinearLayout view = new LinearLayout(this);

 view.setLayoutParams(new LayoutParams(
 LayoutParams.FILL_PARENT, LayoutParams.WRAP_CONTENT));
 view.setOrientation(LinearLayout.HORIZONTAL);

15967ch07.indd 232 6/5/09 11:17:06 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 7 ■ eXpLOrING SeCUrItY aND LOCatION-BaSeD SerVICeS 233

 TextView nameLbl = new TextView(this);

 nameLbl.setText("Hello from PrivActivity");
 view.addView(nameLbl);

 setContentView(view);

 }
}

As you can see, PrivActivity does not do anything miraculous. This is obviously inten-
tional because we want to protect this activity with a permission and then call it from a client.
If the client succeeds, then you’ll see the text “Hello from PrivActivity” on the screen. Now that
you have an activity you want to protect, you can create the permission for it.

To create a custom permission, you have to define it in the AndroidManifest.xml file. The
easiest way to do this is to use the manifest editor. Double-click the AndroidManifest.xml file
and then select the Permissions tab. In the Permissions window, click the Add button, choose
Permission, and then click the OK button. The manifest editor will create an empty new per-
mission for you. Populate the new permission by setting its attributes as shown in Figure 7-3.

Figure 7-3. Declaring a custom permission using the manifest editor

As shown in Figure 7-3, a permission has a name, a label, an icon, a permission group, a
description, and a protection level. Table 7-3 defines these properties.

15967ch07.indd 233 6/5/09 11:17:06 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 7 ■ eXpLOrING SeCUrItY aND LOCatION-BaSeD SerVICeS 234

Table 7-3. Attributes of a Permission

Attribute Required? Description

android:name Yes Name of the permission. You should generally follow
the Android naming scheme (*.permission.*).

android:protectionLevel Yes Defines the “potential for risk” associated with the
permission. Must be one of the following values:
normal
dangerous
signature
signatureOrSystem
Depending on the protection level, the system might
take a different action when determining whether to
grant the permission or not. normal signals that the
permission is low-risk and will not harm the system,
the user, or other applications. dangerous signals that
the permission is high-risk, and that the system will
likely require input from the user before granting this
permission. signature tells Android that the permission
should be granted only to applications that have been
signed with the same digital signature as the application
that declared the permission. signatureOrSystem tells
Android to grant the permission to applications with the
same signature or to the Android package classes. This
protection level is not to be used at this time.

android:permissionGroup No You can place permissions into a group, but for custom
permissions you should avoid setting this property. If
you really want to set this property, use this instead:
android.permission-group.SYSTEM_TOOLS.

android:label No Although it’s not required, use this property to provide a
short description of the permission.

android:description No Although it’s not required, you should use this property
to provide a more useful description of what the per-
mission is for and what it protects.

android:icon No Permissions can be associated with an icon out of your
resources (such as @drawable/myicon).

After you add the permission in Figure 7-3, the manifest editor will modify your manifest
file by adding a permission entry, as shown in Listing 7-5.

Listing 7-5. A Custom Permission Definition

<permission
android:protectionLevel="normal"
android:name="syh.permission.STARTMYACTIVITY "
android:label="Start My Activity"
android:description="@string/startMyActivityDesc"></permission>

Now you have a custom permission. Next, you want to tell the system that the PrivActivity
activity should be launched only by applications that have the syh.permission.STARTMYACTIVITY
permission. You can set a required permission on an activity by adding the android:permission
attribute to the activity definition in the AndroidManifest.xml file. For you to be able to launch

15967ch07.indd 234 6/5/09 11:17:06 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 7 ■ eXpLOrING SeCUrItY aND LOCatION-BaSeD SerVICeS 235

the activity, you’ll also need an intent-filter to the activity. Update your AndroidManifest.xml file
with the content from Listing 7-6.

Listing 7-6. The AndroidManifest.xml File for the Custom-Permission Project

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.cust.perm"
 android:versionCode="1"
 android:versionName="1.0.0">
 <application android:icon="@drawable/icon" android:label="@string/app_name">
 <activity android:name=".CustPermMainActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity android:name="PrivActivity"
android:permission="syh.permission.STARTMYACTIVITY">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
</application>

<permission
android:protectionLevel="normal"
android:label="Start My Activity"
android:description="@string/startMyActivityDesc"
android:name="syh.permission.STARTMYACTIVITY"></permission>

</manifest>

Now run the project in the emulator. Although the main activity does not do anything,
you just want the application installed on the emulator before you write a client for the
privileged activity. Also, Listing 7-6 assumes that you have added a string constant named
startMyActivityDesc to your string resources. To ensure compilation of Listing 7-6, add the
following string resource to the res/values/strings.xml file:

<string name="startMyActivityDesc">Allows starting my activity</string>

Let’s write a client for the activity. In the Eclipse IDE, click New ➤ Project ➤ Android Proj-
ect. Enter ClientOfCustomPermission as the project name, select the “Create new project in
workspace” radio button, and mark the “Use default location” check box. Set the package name
to com.client.cust.perm, the activity name to ClientCustPermMainActivity, and the applica-
tion name to Client Of Custom Permission. Click the Finish button to create the project.

15967ch07.indd 235 6/5/09 11:17:07 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 7 ■ eXpLOrING SeCUrItY aND LOCatION-BaSeD SerVICeS 236

Next, you want to write an activity that displays a button you can click to call the privi-
leged activity. Copy the layout shown in Listing 7-7 to the main.xml file in the project you just
created.

Listing 7-7. Main.xml File for the Client Project

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <Button android:id="@+id/btn"
 android:text="Launch PrivActivity"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />
</LinearLayout>

As you can see, the XML layout file defines a single button whose text reads “Launch
PrivActivity.” Now let’s write an activity that will handle the button-click event and launch the
privileged activity. Copy the code from Listing 7-8 to your ClientCustPermMainActivity class.

Listing 7-8. The Modified ClientCustPermMainActivity Activity

package com.client.cust.perm;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;

public class ClientCustPermMainActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 Button btn = (Button)findViewById(R.id.btn);
 btn.setOnClickListener(new OnClickListener(){

 @Override
 public void onClick(View arg0) {

15967ch07.indd 236 6/5/09 11:17:07 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 7 ■ eXpLOrING SeCUrItY aND LOCatION-BaSeD SerVICeS 237

 Intent intent = new Intent();

 intent.setClassName("com.cust.perm","com.cust.perm.PrivActivity");
 startActivity(intent);
 }});

 }
}

As shown in Listing 7-8, you obtain a reference to the button defined in the main.xml file
and then wire up the on-click listener. When the button is invoked, you create a new intent,
and then set the class name of the activity you want to launch. In this case, you want to launch
the com.cust.perm.PrivActivity in the com.cust.perm package.

The only thing missing at this point is to add a uses-permission entry into the manifest file
to tell the Android runtime that you need the syh.permission.STARTMYACTIVITY to run. Replace
your client project’s manifest file with that shown in Listing 7-9.

Listing 7-9. The Client Manifest File

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.client.cust.perm"
 android:versionCode="1"
 android:versionName="1.0.0">
 <application android:icon="@drawable/icon" android:label="@string/app_name">
 <activity android:name=".ClientCustPermMainActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

</application>

<uses-permission android:name="syh.permission.STARTMYACTIVITY"></uses-permission>

</manifest>

As shown in Listing 7-9, we added a uses-permission entry to request the custom permis-
sion required to start the PrivActivity we implemented in the custom-permission project.

With that, you should be able to deploy the client project to the emulator and then select
the “Launch PrivActivity” button. When the button is invoked, you should see the text “Hello
from PrivActivity.”

After you successfully call the privileged activity, remove the uses-permission entry from
your client project’s manifest file and redeploy the project to the emulator. Once it’s deployed,
confirm that you get a permission denial when you invoke the button to launch the privileged
activity. Note that LogCat will display a permission-denial exception.

15967ch07.indd 237 6/5/09 11:17:07 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 7 ■ eXpLOrING SeCUrItY aND LOCatION-BaSeD SerVICeS 238

Now you know how custom permissions work in Android. Obviously, custom permissions
are not limited to activities. In fact, you can apply both predefined and custom permissions to
Android’s other types of components as well.

Working with Location-Based Services
The location-based services facility in Android sits on two pillars: the mapping APIs and the
location APIs. Each of these APIs is isolated with respect to its own package. For example, the
mapping package is com.google.android.maps and the location package is android.location.
The mapping APIs in Android provide facilities for you to display a map and manipulate it. For
example, you can zoom and pan, you can change the map mode (from satellite view to street
view, for example), you can add custom data to the map, and so on. The other end of the spec-
trum is Global Positioning System (GPS) data and real-time location data, both of which are
handled by the location package.

In this section, we’ll go through each of these packages. We’ll start with the mapping APIs
and show you how to use maps with your applications. As you’ll see, mapping in Android boils
down to using the MapView UI control and the MapActivity class in addition to the mapping
APIs, which integrate with Google Maps. We will also show you how to place custom data onto
the maps that you display. After talking about maps, we’ll delve into location-based services,
which extend the mapping concepts. We will show you how to use the Android Geocoder class
and the LocationManager service. We will also touch on threading issues that surface when you
use these APIs. If you are using the Android 1.5 SDK, you'll need to set the SDK Target of your
Android project to Google APIs. See Chapter 12 for details.

Understanding the Mapping Package
As we mentioned, the mapping APIs comprise one of the components of Android’s location-
based services. The mapping package contains everything you’ll need to display a map on
the screen, handle user interaction with the map (such as zooming), display custom data on
top of the map, and so on. The first step to working with this package is to display a map. To
do that, you’ll use the MapView view class. Using this class, however, requires some prep work.
Specifically, before you can use the MapView, you’ll need to get a map-api key from Google. The
map-api key enables Android to interact with Google Maps services to obtain map data. Here’s
how to obtain a map-api key.

Obtaining a map-api Key from Google
The first thing to understand about the map-api key is that you’ll need two keys: one for devel-
opment with the emulator, and another for production (on the device). The reason for this is
that the certificate used to obtain the map-api key will differ between development and pro-
duction (as we discussed in the first part of this chapter).

For example, during development, the ADT plug-in generates the .apk file and deploys it
to the emulator. Because the .apk file must be signed with a certificate, the ADT plug-in uses
the debug certificate during development. For production deployment, you’ll likely use a
self-signed certificate to sign your .apk file. The good news is that you can obtain a map-
api key for development and one for production, and swap the keys before exporting the
production build.

15967ch07.indd 238 6/5/09 11:17:07 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 7 ■ eXpLOrING SeCUrItY aND LOCatION-BaSeD SerVICeS 239

To obtain a map-api key, you need the certificate that you’ll use to sign your application.
(Recall that in the development phase, the ADT plug-in uses a debug certificate to sign your
application for you prior to deployment onto the emulator.) So you’ll get the MD5 fingerprint
of your certificate, then you’ll enter it on Google’s web site to generate an associated map-
api key.

First you must locate your debug certificate, which is generated and maintained by
Android. On a Windows XP machine, this is the path to the certificate:

C:\Documents and Settings\<username>\Local Settings\Application Data\
Android\debug.keystore

You can find the exact location using the Eclipse IDE. Go to Window ➤ Preferences ➤
Android ➤ Build. The debug certificate’s location will be displayed in the “Default debug key-
store” field, as shown in Figure 7-4.

Figure 7-4. The debug certificate’s location

To extract the MD5 fingerprint, you can run the keytool with the -list option, as shown in
Listing 7-10.

Listing 7-10. Using the Keytool to Obtain the MD5 Fingerprint of the Debug Certificate

keytool -list -alias androiddebugkey -keystore
"C:\Documents and Settings\sh\
Local Settings\Application Data\Android\
debug.keystore" -storepass android -keypass android

15967ch07.indd 239 6/5/09 11:17:07 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 7 ■ eXpLOrING SeCUrItY aND LOCatION-BaSeD SerVICeS 240

Note that the alias of the debug store is androiddebugkey. Similarly, the keystore pass-
word is android and the private-key password is also android. When you run the command in
Listing 7-10, the keytool provides the fingerprint (see Figure 7-5).

Figure 7-5. The keytool output for the list option

Now paste your certificate’s MD5 fingerprint in the appropriate field on this Google site:

http://code.google.com/android/maps-api-signup.html

Then click the “Generate API Key” button to get a corresponding map-api key from the
Google Maps service. The map-api key is active immediately, so you can start using it to
obtain map data from Google. Note that you will need a Google account to obtain a map-api
key—when you try to generate the map-api key, you will be prompted to log in to your Google
account.

Now let’s start playing with maps.

Understanding MapView and Mapactivity
A lot of the mapping technology in Android relies on the MapView UI control and an exten-
sion of android.app.Activity called MapActivity. The MapView and MapActivity classes take
care of the heavy lifting when it comes to displaying and manipulating a map in Android. One
of the things that you’ll have to remember about these two classes is that they have to work
together. Specifically, in order to use a MapView, you need to instantiate it within a MapActivity.
In addition, when instantiating a MapView, you need to supply the map-api key. If you instanti-
ate a MapView using an XML layout, you need to set the android:apiKey property. If you create
a MapView programmatically, you have to pass the map-api key to the MapView constructor.
Lastly, because the underlying data for the map comes from Google Maps, your application
will need permission to access the Internet. This means you need at least the following permis-
sion request in your AndroidManifest.xml file:

<uses-permission android:name="android.permission.INTERNET" />

In fact, whenever you use location-based services (maps, GPS, and so on), you should
include three permissions in your AndroidManifest.xml file (see Listing 7-11).

Listing 7-11. Minimum Required Permissions to Use Location-Based Services

 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
 <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />
 <uses-permission android:name="android.permission.INTERNET" />

15967ch07.indd 240 6/5/09 11:17:07 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 7 ■ eXpLOrING SeCUrItY aND LOCatION-BaSeD SerVICeS 241

Recall from Table 7-2 that android.permission.ACCESS_FINE_LOCATION allows you to obtain
“fine” location data such as GPS data. android.permission.ACCESS_COARSE_LOCATION allows you
to obtain “coarse” location data, which includes WiFi location information.

With the prerequisites out of the way, have a look at Figure 7-6.

Figure 7-6. A MapView control in street-view mode

Figure 7-6 shows an application that displays a map in street-view mode. The application
also demonstrates how you can zoom in, zoom out, and change the map’s view mode. The
XML layout is shown in Listing 7-12.

Listing 7-12. XML Layout of MapView Demo

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="fill_parent"
 android:layout_height="fill_parent">

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal" android:layout_width="fill_parent"
 android:layout_height="wrap_content">

 <Button android:id="@+id/zoomin" android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:text="+"/>

 <Button android:id="@+id/zoomout" android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:text="-"/>

15967ch07.indd 241 6/5/09 11:17:07 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 7 ■ eXpLOrING SeCUrItY aND LOCatION-BaSeD SerVICeS 242

 <Button android:id="@+id/sat" android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:text="Satellite"/>

 <Button android:id="@+id/street" android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:text="Street"/>

 <Button android:id="@+id/traffic" android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:text="Traffic"/>

</LinearLayout>

 <com.google.android.maps.MapView android:id="@+id/mapview"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:apiKey="07vhL0usFXryRakmo2A4t8aKViWwKyGJGEDqpdg"
 />

</LinearLayout>

As shown in Listing 7-12, a parent LinearLayout contains a child LinearLayout and a
MapView. The child LinearLayout contains the buttons shown at the top of Figure 7-6. Also note
that you need to update the MapView control’s android:apiKey value with the value of your own
map-api key.

The code for our sample mapping application is shown in Listing 7-13.

Listing 7-13. The MapActivity Extension Class That Loads the XML Layout

import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;

import com.google.android.maps.MapActivity;
import com.google.android.maps.MapView;
public class MapViewDemoActivity extends MapActivity
{
 private MapView mapView;
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.mapview);

 mapView = (MapView)findViewById(R.id.mapview);

 Button zoominBtn = (Button)findViewById(R.id.zoomin);
 Button zoomoutBtn = (Button)findViewById(R.id.zoomout);

15967ch07.indd 242 6/5/09 11:17:07 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 7 ■ eXpLOrING SeCUrItY aND LOCatION-BaSeD SerVICeS 243

 Button satBtn = (Button)findViewById(R.id.sat);
 Button streetBtn = (Button)findViewById(R.id.street);
 Button trafficBtn = (Button)findViewById(R.id.traffic);

 // zoomin
 zoominBtn.setOnClickListener(new OnClickListener(){

 @Override
 public void onClick(View view)
 {
 mapView.getController().zoomIn();
 }});
 // zoom out
 zoomoutBtn.setOnClickListener(new OnClickListener(){

 @Override
 public void onClick(View view)
 {
 mapView.getController().zoomOut();
 }});

 // satellite
 satBtn.setOnClickListener(new OnClickListener(){

 @Override
 public void onClick(View view)
 {
 mapView.setStreetView(false);
 mapView.setTraffic(false);
 mapView.setSatellite(true);
 }});
 // street
 streetBtn.setOnClickListener(new OnClickListener(){

 @Override
 public void onClick(View view)
 {
 mapView.setTraffic(false);
 mapView.setSatellite(false);
 mapView.setStreetView(true);
 }});
 // traffic
 trafficBtn.setOnClickListener(new OnClickListener(){

15967ch07.indd 243 6/5/09 11:17:07 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 7 ■ eXpLOrING SeCUrItY aND LOCatION-BaSeD SerVICeS 244

 @Override
 public void onClick(View view)
 {
 mapView.setSatellite(false);
 mapView.setStreetView(false);
 mapView.setTraffic(true);
 }});
 }

 @Override
 protected boolean isRouteDisplayed() {
 return false;
 }

}

As shown in Listing 7-13, displaying the MapView using onCreate() is no different from
displaying any other control. That is, you set the content view of the UI to a layout file that
contains the MapView, and that takes care of it. Suprisingly, supporting zoom features is also
fairly easy. To zoom in or zoom out, you use the MapController class of the MapView. Do this
by calling mapView.getController() and then calling the approproiate zoomIn() or zoomOut()
method. Zooming this way produces a one-level zoom; users need to repeat the action to
increase the amount of magnification or reduction.

You’ll also find it straightforward to offer the ability to change view modes. The MapView
supports several modes: map, street, satellite, and traffic. Map is the default mode. Street
mode places a layer on top of the map that contains street information such as road names.
Satellite mode shows the map in satellite view. Traffic mode shows traffic information on the
map. Note that traffic mode is supported on a limited number of major highways. To change
modes, you must call the appropriate setter method with true and set the other modes to
false. The reason for this is that one mode can overlay another mode. For example, you can
overlay satellite and street modes one on top of the other.

You’ll probably agree that the amount of code required to display a map and to imple-
ment zoom and mode changes is minimal with Android (see Listing 7-13). Android’s mapping
capability is definitely unbeatable. It might come as a shock to some of you that the code gets
even easier. Take a look at the XML layout and code shown in Listing 7-14.

Listing 7-14. Zooming and Panning Made Easier

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <com.google.android.maps.MapView android:id="@+id/mapview"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:apiKey="07vhL0usFXryRakmo2A4t8aKViWwKyGJGEDqpdg"
 />

15967ch07.indd 244 6/5/09 11:17:07 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 7 ■ eXpLOrING SeCUrItY aND LOCatION-BaSeD SerVICeS 245

 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/zoomCtrls"
 android:orientation="horizontal" android:layout_width="fill_parent"
 android:layout_height="wrap_content"
android:layout_alignParentBottom="true">

 </LinearLayout>

</RelativeLayout>

public class MapViewDemoActivity extends MapActivity
{
 private MapView mapView;
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.mapview);

 mapView = (MapView)findViewById(R.id.mapview);

 LinearLayout layout = (LinearLayout)findViewById(R.id.zoomCtrls);
 layout.addView(mapView.getZoomControls());

 mapView.setClickable(true);
 }

 @Override
 protected boolean isRouteDisplayed() {
 return false;
 }

}

The difference between Listing 7-14 and Listing 7-13 is that we changed the XML layout
for our view to use RelativeLayout. We removed all the zoom controls and view-mode con-
trols and replaced them with an empty LinearLayout oriented at the bottom of the screen. The
magic in this example is in the code and not the layout. Specifically, notice that we populated
the LinearLayout with mapView.getZoomControls(). This means that the MapView already has
controls that allow you to zoom in and out. All you have to do is get a reference to the controls
and then add it to your view (wherever you want it). Figure 7-7 shows the MapView’s default
zoom controls.

We are not done yet. The MapView control is very powerful. The last line in the onCreate()
method of Listing 7-14 calls mapView.setClickable(true). This, in fact, enables panning of
the map.

Now let’s learn how to add custom data to the map.

15967ch07.indd 245 6/5/09 11:17:07 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 7 ■ eXpLOrING SeCUrItY aND LOCatION-BaSeD SerVICeS 246

Figure 7-7. The MapView’s built-in zoom controls

Using Overlays
Google Maps provides a facility that allows you to place custom data on top of the map. You
can see an example of this if you search for pizza restaurants in your area: Google Maps places
pushpins, or balloon markers, to indicate each location. The way Google Maps provides this
facility is by allowing you to add a layer on top of the map. Android provides several classes
that help you to add layers to a map. The key class for this type of functionality is Overlay, but
you can use an extension of this class called ItemizedOverlay. Listing 7-15 shows an example.

Listing 7-15. Marking Up a Map Using ItemizedOverlay

import java.util.ArrayList;
import java.util.List;

import android.graphics.Canvas;
import android.graphics.drawable.Drawable;
import android.os.Bundle;
import android.widget.LinearLayout;

import com.google.android.maps.GeoPoint;
import com.google.android.maps.ItemizedOverlay;
import com.google.android.maps.MapActivity;
import com.google.android.maps.MapView;
import com.google.android.maps.OverlayItem;

15967ch07.indd 246 6/5/09 11:17:07 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 7 ■ eXpLOrING SeCUrItY aND LOCatION-BaSeD SerVICeS 247

public class MappingOverlayActivity extends MapActivity {
 private MapView mapView;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.mapview);

 mapView = (MapView) findViewById(R.id.mapview);

 LinearLayout layout = (LinearLayout) findViewById(R.id.zoomCtrls);
 layout.addView(mapView.getZoomControls());

 mapView.setClickable(true);

 Drawable marker=getResources().getDrawable(R.drawable.mapmarker);
 marker.setBounds(0, 0, marker.getIntrinsicWidth(),
marker.getIntrinsicHeight());
 mapView.getOverlays().add(new InterestingLocations(marker));
 }

 @Override
 protected boolean isRouteDisplayed() {
 return false;

 }

 class InterestingLocations extends ItemizedOverlay {
 private List<OverlayItem> locations = new ArrayList<OverlayItem>();
 private Drawable marker;

 public InterestingLocations(Drawable marker)
 {
 super(marker);
 this.marker=marker;
 // create locations of interest
 GeoPoint disneyMagicKingdom = new
GeoPoint((int)(28.418971*1000000),(int)(-81.581436*1000000));
 GeoPoint disneySevenLagoon = new
GeoPoint((int)(28.410067*1000000),(int)(-81.583699*1000000));

 locations.add(new OverlayItem(disneyMagicKingdom ,
"Magic Kingdom", "Magic Kingdom"));
 locations.add(new OverlayItem(disneySevenLagoon ,
"Seven Lagoon", "Seven Lagoon"));

 populate();
 }

15967ch07.indd 247 6/5/09 11:17:07 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 7 ■ eXpLOrING SeCUrItY aND LOCatION-BaSeD SerVICeS 248

 @Override
 public void draw(Canvas canvas, MapView mapView, boolean shadow) {
 super.draw(canvas, mapView, shadow);

 boundCenterBottom(marker);
 }

 @Override
 protected OverlayItem createItem(int i) {
 return locations.get(i);
 }

 @Override
 public int size() {
 return locations.size();
 }

 }
}

Listing 7-15 demonstrates how you can overlay markers onto a map. The example places
two markers (see Figure 7-8): one at Disney’s Magic Kingdom, and another one at Disney’s
Seven Seas Lagoon (both near Orlando, Florida).

In order for you to add markers onto a map, you have to create and add an extension of
com.google.android.maps.Overlay to the map. The Overlay class itself cannot be instantiated,
so you’ll have to extend it or use one of the extensions. In our example, we have implemented
InterestingLocations, which extends ItemizedOverlay, which in turn extends Overlay. The
Overlay class defines the contract for an overlay, and ItemizedOverlay is a handy implementa-
tion that makes it easy for you to create a list of locations that can be marked on a map.

The general usage pattern is to extend the ItemizedOverlay class and add your “items”—
interesting locations—in the constructor. After you instantiate your points of interest, you call
the populate() method of ItemizedOverlay. The populate() method is a utility that caches
the OverlayItem(s). Internally, the class calls the size() method to determine the number of
overlay items, and then enters a loop, calling createItem(i) for each item. In the createItem
method, you return the already created item given the index in the array.

As you can see from Listing 7-15, you simply create the points and call populate() to show
markers on a map. The Overlay contract manages the rest. To make it all work, the onCreate()
method of the activity creates the InterestingLocations instance, passing in the Drawable
that’s used for the markers. Then onCreate()adds the InterestingLocations instance to the
overlay collection (mapView.getOverlays().add()).

Another interesting aspect of Listing 7-15 is the creation of the OverlayItem(s). In order
to create an OverlayItem, you need an object of type GeoPoint. The GeoPoint class represents
a location by its latitude and longitude, in micro degrees. In our example, we obtained the
latitude and longitude of Magic Kingdom and Seven Seas Lagoon using geocoding sites on the
web. (As you’ll see shortly, you can use geocoding to convert an address to a latitude/longitude
pair, for example.) We then converted the latitude and longitude to micro degrees (because
the APIs operate on micro degrees) by multiplying by 1,000,000 and then performing a cast to
an integer.

15967ch07.indd 248 6/5/09 11:17:08 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 7 ■ eXpLOrING SeCUrItY aND LOCatION-BaSeD SerVICeS 249

Figure 7-8. MapView with markers

All in all, you’ll agree that placing markers on a map couldn’t be easier. Or could it? We
don’t have a database of latitude/longitude pairs, but we’re guessing that we’ll need to some-
how create one or more GeoPoints using a real address. That’s when you can use the Geocoder,
which is part of the location package that we’ll discuss next.

Understanding the Location Package
The android.location package provides facilities for location-based services. In this section,
we are going to discuss two important pieces of this package: the Geocoder class and the
LocationManager service. We’ll start with Geocoder.

Geocoding with android
If you are going to do anything practical with maps, you’ll likely have to convert an address (or
location) to a latitude/longitude pair. This concept in known as geocoding, and the android.
location.Geocoder class provides this facility. In fact, the Geocoder class provides both forward
and backward conversion—it can take an address and return a latitude/longitude pair, and it
can translate a latitude/longitude pair into a list of addresses. The class provides the following
methods:

	 •	 List<Address> getFromLocation(double latitude, double longitude, int
maxResults)

	 •	 List<Address> getFromLocationName(String locationName, int maxResults, double
lowerLeftLatitude, double lowerLeftLongitude, double upperRightLatitude,
double upperRightLongitude)

	 •	 List<Address> getFromLocationName(String locationName, int maxResults)

15967ch07.indd 249 6/5/09 11:17:08 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 7 ■ eXpLOrING SeCUrItY aND LOCatION-BaSeD SerVICeS 250

It turns out that computing an address is not an exact science, due to the various ways
a location can be described. For example, the getFromLocationName() methods can take the
name of a place, the physical address, an airport code, or simply a well-known name for
the location. Thus, the methods provide a list of addresses and not a single address. Because the
methods return a list, you are encouraged to limit the result set by providing a value for
maxResults that ranges between 1 and 5. Now let’s see an example.

Listing 7-16 shows the XML layout and corresponding code for the user interface shown in
Figure 7-9. To run the example, you’ll need to update the listing with your own map-api key.

Listing 7-16. Working with the Android Geocoder Class

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <LinearLayout android:layout_width="fill_parent"
android:layout_alignParentBottom="true"
 android:layout_height="wrap_content" android:orientation="vertical" >

 <EditText android:layout_width="fill_parent" android:id="@+id/location"
 android:layout_height="wrap_content" android:text="White House"/>

 <Button android:id="@+id/geocodeBtn"
android:layout_width="wrap_content"
android:layout_height="wrap_content" android:text="Find Location"/>
 </LinearLayout>

 <com.google.android.maps.MapView
 android:id="@+id/geoMap" android:clickable="true"
 android:layout_width="fill_parent"
 android:layout_height="320px"
 android:apiKey="07vhL0usFXryRakmo2A4t8aKViWwKyGJGEDqpdg"
 />

</RelativeLayout>

import java.io.IOException;
import java.util.List;

import android.location.Address;
import android.location.Geocoder;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.EditText;

15967ch07.indd 250 6/5/09 11:17:08 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 7 ■ eXpLOrING SeCUrItY aND LOCatION-BaSeD SerVICeS 251

import com.google.android.maps.GeoPoint;
import com.google.android.maps.MapActivity;
import com.google.android.maps.MapView;

public class GeocodingDemoActivity extends MapActivity
{
 Geocoder geocoder = null;
 MapView mapView = null;
 @Override
 protected boolean isRouteDisplayed() {
 return false;
 }

 @Override
 protected void onCreate(Bundle icicle)
 {
 super.onCreate(icicle);

 setContentView(R.layout.geocode);
 mapView = (MapView)findViewById(R.id.geoMap);
 // lat/long of Jacksonville, FL
 int lat = (int)(30.334954*1000000);
 int lng = (int)(-81.5625*1000000);
 GeoPoint pt = new GeoPoint(lat,lng);
 mapView.getController().setZoom(10);
 mapView.getController().setCenter(pt);
 mapView.getController().animateTo(pt);
 //
 Button geoBtn =(Button)findViewById(R.id.geocodeBtn);

 geocoder = new Geocoder(this);

 //
 geoBtn.setOnClickListener(new OnClickListener(){

 @Override
 public void onClick(View arg0) {
 try {
 EditText loc = (EditText)findViewById(R.id.location);
 String locationName = loc.getText().toString();

 List<Address> addressList =
geocoder.getFromLocationName(locationName, 5);
 if(addressList!=null && addressList.size()>0)
 {
 int lat = (int)addressList.get(0).getLatitude()*1000000;
 int lng = (int)addressList.get(0).getLongitude()*1000000;

15967ch07.indd 251 6/5/09 11:17:08 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 7 ■ eXpLOrING SeCUrItY aND LOCatION-BaSeD SerVICeS 252

 GeoPoint pt = new GeoPoint(lat,lng);
 mapView.getController().setZoom(10);
 mapView.getController().setCenter(pt);
 mapView.getController().animateTo(pt);
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
 }});

 }
}

Figure 7-9. Geocoding to a point given the location name

To demonstrate the uses of geocoding in Android, type the name of the location, or its
address, in the EditText field and then click the Find Location button. In order to find the
address of a location, call the getFromLocationName() method of Geocoder. The location can
be an address or a well-known name such as “White House.” Geocoding can be a timely
operation, so we recommend that you limit the results to five, as the Android documentation
suggests. The call to getFromLocationName() returns a list of addresses. The sample applica-
tion takes the list of addresses and processes the first one if any were found. Every address has
a latitude and longitude, which you use to create a GeoPoint. You then get the map controller
and navigate to the point. Note that before you call animateTo(), you set the zoom level to 10
and center the map to the same point. The zoom level can be set to an integer between 1 and
21, inclusive. As you move from 1 toward 21, the zoom level increases by a factor of 2.

15967ch07.indd 252 6/5/09 11:17:08 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 7 ■ eXpLOrING SeCUrItY aND LOCatION-BaSeD SerVICeS 253

You should understand a few points with respect to geocoding. First, a returned address
is not always an exact address. Obviously, because the returned list of addresses depends on
the accuracy of the input, you need to make every effort to provide an accurate location name
to the Geocoder. Second, whenever possible, set the maxResults parameter to a value between
1 and 5. Lastly, you should seriously consider doing the geocoding operation in a different
thread from the UI thread. There are two reasons for this. The first is obvious: the operation is
time-consuming and you don’t want the UI to hang while you do the geocoding. The second
reason is that with a mobile device, you always need to assume that the network connection
can be lost and that the connection is weak. Therefore, you need to handle input/output (I/O)
exceptions and timeouts appropriately. Once you have computed the addresses, you can then
post the results to the UI thread. Let’s investigate this a bit more.

Geocoding with Background threads
Using background threads to handle time-consuming operations is very common. The gen-
eral pattern is to handle a UI event (such as a button click) to initiate a timely operation. From
the event handler, you create a new thread to execute the work and start the thread. The UI
thread then returns to the user interface to handle interaction with the user, while the back-
ground thread works. After the background thread completes, a part of the UI might have to
be updated or the user might have to be notified. The background thread does not update the
UI directly; instead, the background thread notifies the UI thread to update itself. Listing 7-17
demonstrates this idea using geocoding.

Listing 7-17. Geocoding in a Separate Thread

import java.io.IOException;
import java.util.List;

import android.app.AlertDialog;
import android.app.Dialog;
import android.app.ProgressDialog;
import android.location.Address;
import android.location.Geocoder;
import android.os.Bundle;
import android.os.Handler;
import android.os.Message;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.EditText;

import com.google.android.maps.GeoPoint;
import com.google.android.maps.MapActivity;
import com.google.android.maps.MapView;
public class GeocodingWithThreadsDemoActivity extends MapActivity

15967ch07.indd 253 6/5/09 11:17:08 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 7 ■ eXpLOrING SeCUrItY aND LOCatION-BaSeD SerVICeS 254

{
 Geocoder geocoder = null;
 MapView mapView = null;
 ProgressDialog progDialog=null;
 List<Address> addressList=null;
 @Override
 protected boolean isRouteDisplayed() {
 return false;
 }

 @Override
 protected void onCreate(Bundle icicle) {
 super.onCreate(icicle);

 setContentView(R.layout.geocode);
 mapView = (MapView)findViewById(R.id.geoMap);
 // lat/long of Jacksonville, FL
 int lat = (int)(30.334954*1000000);
 int lng = (int)(-81.5625*1000000);
 GeoPoint pt = new GeoPoint(lat,lng);
 mapView.getController().setZoom(10);
 mapView.getController().setCenter(pt);
 mapView.getController().animateTo(pt);
 //
 Button geoBtn =(Button)findViewById(R.id.geocodeBtn);

 geocoder = new Geocoder(this);

 //
 geoBtn.setOnClickListener(new OnClickListener(){

 @Override
 public void onClick(View view) {
 EditText loc = (EditText)findViewById(R.id.location);
 String locationName = loc.getText().toString();

 progDialog =
ProgressDialog.show(GeocodingWithThreadsDemoActivity.this,
"Processing...", "Finding Location...", true, false);

 findLocation(locationName);
 }});

 }

 private void findLocation(final String locationName)
 {

15967ch07.indd 254 6/5/09 11:17:08 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 7 ■ eXpLOrING SeCUrItY aND LOCatION-BaSeD SerVICeS 255

 Thread thrd = new Thread()
 {
 public void run()
 {
 try {
 // do background work
 addressList = geocoder.getFromLocationName(locationName, 5);
 //send message to handler to process results
 uiCallback.sendEmptyMessage(0);

 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 };
 thrd.start();
 }
 // ui thread callback handler
 private Handler uiCallback = new Handler()
 {
 @Override
 public void handleMessage(Message msg)
 {
 progDialog.dismiss();

 if(addressList!=null && addressList.size()>0)
 {
 int lat = (int)addressList.get(0).getLatitude()*1000000;
 int lng = (int)addressList.get(0).getLongitude()*1000000;
 GeoPoint pt = new GeoPoint(lat,lng);
 mapView.getController().setZoom(10);
 mapView.getController().setCenter(pt);
 mapView.getController().animateTo(pt);

 }
 else
 {
 Dialog foundNothingDlg = new
AlertDialog.Builder(GeocodingWithThreadsDemoActivity.this)
 .setIcon(0)
 .setTitle("Failed to Find Location")
 .setPositiveButton("Ok", null)
 .setMessage("Location Not Found...")
 .create();
 foundNothingDlg.show();
 }
 }
 };
}

15967ch07.indd 255 6/5/09 11:17:08 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 7 ■ eXpLOrING SeCUrItY aND LOCatION-BaSeD SerVICeS 256

// geocode.xml
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <LinearLayout android:layout_width="fill_parent"
android:layout_alignParentBottom="true"
 android:layout_height="wrap_content" android:orientation="vertical" >

 <EditText android:layout_width="fill_parent" android:id="@+id/location"
 android:layout_height="wrap_content" android:text="ORLANDO FLORIDA"/>

 <Button android:id="@+id/geocodeBtn"
android:layout_width="wrap_content"
android:layout_height="wrap_content" android:text="Find Location"/>
 </LinearLayout>

 <com.google.android.maps.MapView
 android:id="@+id/geoMap" android:clickable="true"
 android:layout_width="fill_parent"
 android:layout_height="320px"
 android:apiKey="PUT_MAPPING-API KEY HERE"
 />

</RelativeLayout>

Listing 7-17 is a modified version of the example in Listing 7-16. The difference is that
now, in the onClick() method, you display a progress dialog and call findLocation() (see
Figure 7-10). findLocation() then creates a new thread and calls the start() method, which
ultimately results in a call to the thread’s run() method. In the run() method, you use the
Geocoder class to search for the location. When the search is done, you must post the mes-
sage to something that knows how to interact with the UI thread, because you need to
update the map. Android provides the android.os.Handler class for this purpose. From the
background thread, call the uiCallback.sendEmptyMessage(0) to have the UI thread pro-
cess the results from the search. The code calls the handler’s callback, which looks at the
addressList returned by the Geocoder. The callback then updates the map with the result or
displays an alert dialog to indicate that the search returned nothing. The UI for this example
is shown in Figure 7-10.

15967ch07.indd 256 6/5/09 11:17:08 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 7 ■ eXpLOrING SeCUrItY aND LOCatION-BaSeD SerVICeS 257

Figure 7-10. Showing a progress window during long operations

Understanding the LocationManager Service
The LocationManager service is one of the key services offered by the android.location pack-
age. This service provides two things: a mechanism for you to obtain the device’s geographical
location, and a facility for you to be notified (via an intent) when the device enters a specified
geographical location.

In this section, you are going to learn how the LocationManager service works. To use the
service, you must first obtain a reference to it. Listing 7-18 shows the usage pattern for the
LocationManager service.

Listing 7-18. Using the LocationManager Service

import java.util.List;

import android.app.Activity;
import android.content.Context;
import android.location.Location;
import android.location.LocationManager;
import android.os.Bundle;
public class LocationManagerDemoActivity extends Activity
{

15967ch07.indd 257 6/5/09 11:17:08 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 7 ■ eXpLOrING SeCUrItY aND LOCatION-BaSeD SerVICeS 258

 @Override
 protected void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 LocationManager locMgr =
(LocationManager)this.getSystemService(Context.LOCATION_SERVICE);
Location loc = locMgr.getLastKnownLocation(LocationManager.GPS_PROVIDER);

List<String> providerList = locMgr.getAllProviders();

 }
}

The LocationManager service is a system-level service. System-level services are services
that you obtain from the context using the service name; you don’t instantiate them directly.
The android.app.Activity class provides a utility method called getSystemService() that you
can use to obtain a system-level service. As shown in Listing 7-18, you call getSystemService()
and pass in the name of the service you want—in this case, Context.LOCATION_SERVICE.

The LocationManager service provides geographical-location details by using location pro-
viders. Currently, there are two types of location providers: GPS and Network. GPS providers
use a Global Positioning System to obtain location information, whereas network providers
use cell-phone towers or WiFi networks to obtain location information. The LocationManager
class can provide the device’s last-known location (practically the current location) via the
getLastKnownLocation() method. Location information is obtained from a provider, so the
method takes as a parameter the name of the provider you want to use. Valid values for
provider names are LocationManager.GPS_PROVIDER and LocationManager.Network. Calling
getLastKnownLocation() returns an android.location.Location instance. The Location class
provides the location’s latitude and longitude, the time the location was computed, and pos-
sibly the device’s altitude, speed, and bearing.

Because the LocationManager operates on providers, the class provides APIs to obtain
providers. For example, you can get all of the providers by calling getAllProviders(). You can
obtain a specific provider by calling getProvider(), passing the name of the provider as an
argument (such as LocationManager.GPS_PROVIDER).

To that end, the gotcha with using the LocationManager services occurs at develop-
ment time—LocationManager needs location information and the emulator doesn’t really
have access to GPS or cell towers. So in order for you to develop with the LocationManager
service, you (sort of) tell the emulator about your location. For example, you can ask the
LocationManager to notify you if the device is near a location. To test something like this with
the emulator, you would have to send the emulator periodic updates on your location; the
emulator would then play that information back to the application. Listing 7-19 shows an
example.

Listing 7-19. Registering for Location Updates

import android.app.Activity;
import android.content.Context;
import android.location.Location;
import android.location.LocationListener;

15967ch07.indd 258 6/5/09 11:17:08 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 7 ■ eXpLOrING SeCUrItY aND LOCatION-BaSeD SerVICeS 259

import android.location.LocationManager;
import android.os.Bundle;
import android.widget.Toast;

public class LocationUpdateDemoActivity extends Activity
{
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);

 LocationManager locMgr = (LocationManager)
getSystemService(Context.LOCATION_SERVICE);

 LocationListener locListener = new LocationListener()
 {

 public void onLocationChanged(Location location)
 {
 if (location != null)
 {
 Toast.makeText(getBaseContext(),
 "New location latitude [" +
location.getLatitude() +
 "] longitude [" + location.getLongitude()+"]",
 Toast.LENGTH_SHORT).show();
 }
 }

 public void onProviderDisabled(String provider)
 {
 }

 public void onProviderEnabled(String provider)
 {
 }

 public void onStatusChanged(String provider,
int status, Bundle extras)
 {
 }

 };

15967ch07.indd 259 6/5/09 11:17:08 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 7 ■ eXpLOrING SeCUrItY aND LOCatION-BaSeD SerVICeS 260

 locMgr.requestLocationUpdates(
 LocationManager.GPS_PROVIDER,
 0,
 0,
 locListener);
 }
}

As we said, one of the primary uses of the LocationManager service is to receive notifica-
tions of the device’s location. Listing 7-19 demonstrates how you can register a listener to
receive location-update events. To register a listener, you call the requestLocationUpdates()
method, passing the provider type as one of the parameters. When the location changes, the
LocationManager calls the onLocationChanged() method of the listener with the new Location.
In Listing 7-19, our listener implementation simply shows a message in the UI to indicate the
new latitude and longitude of the location. To test this in the emulator, you can use the Dal-
vik Debug Monitor Service (DDMS) interface that ships with the ADT plug-in for Eclipse. The
DDMS UI provides a screen for you to send the emulator a new location (see Figure 7-11).

Figure 7-11. Using the DDMS UI in Eclipse to send location data to the emulator

As shown in Figure 7-11, the Manual tab in the DDMS user interface allows you to send
a new GPS location (latitude/longitude pair) to the emulator. Sending a new location will fire
the onLocationChanged() method on the listener, which will result in a message to the user
conveying the new location.

15967ch07.indd 260 6/5/09 11:17:09 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 7 ■ eXpLOrING SeCUrItY aND LOCatION-BaSeD SerVICeS 261

You can send location data to the emulator using several other techniques, as shown in
the DDMS user interface (see Figure 7-11). For example, the DDMS interface allows you to
submit a GPS Exchange Format (GPX) file or a Keyhole Markup Language (KML) file. You can
obtain sample GPX files from these sites:

	 •	 http://www.topografix.com/gpx_resources.asp

	 •	 http://tramper.co.nz/?view=gpxFiles

	 •	 http://www.gpxchange.com/

Similarly, you can use the following KML resources to obtain or create KML files:

	 •	 http://bbs.keyhole.com/

	 •	 http://code.google.com/apis/kml/documentation/kml_tut.html

So you can upload a GPX or KML file to the emulator and set the speed at which the emu-
lator will play back the file (see Figure 7-12). The emulator will then send location updates to
your application based on the configured speed.

Figure 7-12. Uploading GPX and KML files to the emulator for playback

15967ch07.indd 261 6/5/09 11:17:09 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 7 ■ eXpLOrING SeCUrItY aND LOCatION-BaSeD SerVICeS 262

Summary
In this chapter, we discussed two important parts of the Android SDK: the application-security
model and location-based services.

With respect to security, you learned that Android requires all applications to be signed
with a digital signature. We discussed ensuring build-time security with the emulator and
Eclipse, as well as signing an Android package for release. We also talked about runtime secu-
rity—you learned that the Android installer requests the permissions your application needs
at install time. If a particular permission is denied, then any code that attempts to access a
resource protected by a permission will result in a permission exception. We also showed you
how to define the permissions required by your application, as well as how to sign the .apk file
for deployment.

With respect to location-based services, we talked at length about using the MapView
control and the MapActivity class. We started with the basics of the map and then showed
you how to utilize overlays to place markers on maps. We even showed you how to geocode
and handle geocoding in background threads. The last thing we talked about was the
LocationManager class, which provides detailed location information through providers.
You can choose from two provider types: GPS and Network. GPS providers obtain location
information using Global Positioning Systems, while network providers utilize cell towers
and WiFi networks.

In the next chapter, we’ll talk about building and consuming services in Android.

15967ch07.indd 262 6/5/09 11:17:09 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

C h a p t e r 8

Building and Consuming
Services

The Android Platform provides a complete software stack. This means you get an operating
system and middleware, as well as working applications (such as a phone dialer). Alongside
all of this, you have an SDK that you can use to write applications for the platform. Thus far,
we’ve seen that we can build applications that directly interact with the user through a user
interface. We have not, however, discussed background services or the possibilities of building
components that run in the background.

In this chapter, we are going to focus on building and consuming services in Android.
First we’ll discuss consuming HTTP services, then we’ll discuss interprocess communication
(communication between applications on the same device).

Consuming HTTP Services
Android applications and mobile applications in general are small apps with a lot of function-
ality. One of the ways that mobile apps deliver such rich functionality on such a small device
is that they pull information from various sources. For example, the T-Mobile G1 comes with
the Maps application, which provides seemingly sophisticated mapping functionality. We,
however, know that the application is integrated with Google Maps and other services, which
provide most of the sophistication.

That said, it is likely that the applications you write will also leverage information from
other applications. A common integration strategy is to use HTTP. For example, you might
have a Java servlet that provides services you want to leverage from one of your Android appli-
cations. How do you do that with Android? Interestingly, the Android SDK ships with Apache’s
HttpClient (http://hc.apache.org/httpclient-3.x/), which is universally used within the
J2EE space. The Android SDK ships with a version of the HttpClient that has been modified for
Android, but the APIs are very similar to the APIs in the J2EE version.

The Apache HttpClient is a comprehensive HTTP client. Although it offers full support
for the HTTP protocol, you will likely utilize HTTP GET and POST. In this section, we will discuss
using the HttpClient to make HTTP GET and HTTP POST calls.

263

15967ch08.indd 263 6/5/09 11:16:39 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 8 ■ BUILDING aND CONSUMING SerVICeS264

Using the HttpClient for HTTP GET Requests
Here’s the general pattern for using the HttpClient:

 1. Create an HttpClient (or get an existing reference).

 2. Instantiate a new HTTP method, such as PostMethod or GetMethod.

 3. Set HTTP parameter names/values.

 4. Execute the HTTP call using the HttpClient.

 5. Process the HTTP response.

Listing 8-1 shows how to execute an HTTP GET using the HttpClient.

■Note Because the code attempts to use the Internet, you will need to add android.permission.
INTERNET to your manifest file when making HTTP calls using the HttpClient.

Listing 8-1. Using the HttpClient to Get an HTTP GET request

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.URI;

import org.apache.http.HttpResponse;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import org.apache.http.impl.client.DefaultHttpClient;

public class TestHttpGet {

 public void executeHttpGet() throws Exception {
 BufferedReader in = null;
 try {
 HttpClient client = new DefaultHttpClient();
 HttpGet request = new HttpGet();
 request.setURI(new URI("http://code.google.com/android/"));
 HttpResponse response = client.execute(request);
 in = new BufferedReader
(new InputStreamReader(response.getEntity()
 .getContent()));

15967ch08.indd 264 6/5/09 11:16:39 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 8 ■ BUILDING aND CONSUMING SerVICeS 265

 StringBuffer sb = new StringBuffer("");
 String line = "";
 String NL = System.getProperty("line.separator");
 while ((line = in.readLine()) != null) {
 sb.append(line + NL);
 }
 in.close();

 String page = sb.toString();
 System.out.println(page);
 } finally {
 if (in != null) {
 try {
 in.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }

 }
}

The HttpClient provides abstractions for the various HTTP request types, such as HttpGet,
HttpPost, and so on. Listing 8-1 uses the HttpClient to get the contents of the http://code.
google.com/android/ URL. The actual HTTP request is executed with the call to client.
execute(). After executing the request, the code reads the entire response into a string object.
Note that the BufferedReader is closed in the finally block, which also closes the underlying
HTTP connection.

Realize that the class in Listing 8-1 does not extend android.app.Activity. In other words,
you don’t need to be within the context of an activity to use HttpClient—because HttpClient
is packaged with Android, you can use it from within the context of any Android component
(such as an activity) or use it as part of a standalone class.

The code in Listing 8-1 executes an HTTP request without passing any HTTP parameters
to the server. You can pass name/value parameters as part of the request by appending name/
value pairs to the URL, as shown in Listing 8-2.

Listing 8-2. Adding Parameters to an HTTP GET Request

HttpGet method = new HttpGet("http://somehost/WS2/Upload.aspx?one=valueGoesHere");
client.execute(method);

When you execute an HTTP GET, the parameters (names and values) of the request are
passed as part of the URL. Passing parameters this way has some limitations. Namely, the
length of a URL should be kept below 2,048 characters. Instead of using HTTP GET, you can use
HTTP POST. The POST method is more flexible and passes parameters as part of the request body.

15967ch08.indd 265 6/5/09 11:16:39 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 8 ■ BUILDING aND CONSUMING SerVICeS266

Using the HttpClient for HTTP POST Requests
Making an HTTP POST call is very similar to making an HTTP GET call (see Listing 8-3).

Listing 8-3. Making an HTTP POST Request with the HttpClient

import java.util.ArrayList;
import java.util.List;

import org.apache.http.HttpResponse;
import org.apache.http.NameValuePair;
import org.apache.http.client.HttpClient;
import org.apache.http.client.entity.UrlEncodedFormEntity;
import org.apache.http.client.methods.HttpPost;
import org.apache.http.impl.client.DefaultHttpClient;
import org.apache.http.message.BasicNameValuePair;

public class TestHttpPost
{
 public String executeHttpPost() throws Exception {
 BufferedReader in = null;
 try {
 HttpClient client = new DefaultHttpClient();
 HttpPost request = new HttpPost(
 "http://somewebsite/WS2/Upload.aspx");

 List<NameValuePair> postParameters = new ArrayList<NameValuePair>();
 postParameters.add(new BasicNameValuePair("one", "valueGoesHere"));
 UrlEncodedFormEntity formEntity = new UrlEncodedFormEntity(
 postParameters);

 request.setEntity(formEntity);
 HttpResponse response = client.execute(request);
 in = new BufferedReader(new InputStreamReader(response.getEntity()
 .getContent()));

 StringBuffer sb = new StringBuffer("");
 String line = "";
 String NL = System.getProperty("line.separator");
 while ((line = in.readLine()) != null) {
 sb.append(line + NL);
 }
 in.close();

 String result = sb.toString();
 return result;

15967ch08.indd 266 6/5/09 11:16:40 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 8 ■ BUILDING aND CONSUMING SerVICeS 267

 } finally {
 if (in != null) {
 try {
 in.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }

 }
}

To make an HTTP POST call with the HttpClient, you have to call the execute method of
the HttpClient with an instance of HttpPost. When making HTTP POST calls, you generally pass
URL-encoded name/value form parameters as part of the HTTP request. To do this with the
HttpClient, you have to create a list that contains instances of NameValuePair objects and then
wrap that list with a UrlEncodedFormEntity object. The NameValuePair wraps a name/value
combination and the UrlEncodedFormEntity class knows how to encode a list of NameValuePair
objects suitable for HTTP calls (generally POST calls). After you create a UrlEncodedFormEntity,
you can set the entity type of the HttpPost to the UrlEncodedFormEntity and then execute the
request.

In Listing 8-3, we create an HttpClient and then instantiate the HttpPost with the URL of
the HTTP endpoint. Next we create a list of NameValuePair objects and populate that with a
single name/value parameter. We set the name of the parameter to one and the value of the
parameter to valueGoesHere. We then create a UrlEncodedFormEntity instance, passing the list
of NameValuePair objects to its constructor. Finally, we call the setEntity() method of the POST
request and then execute the request using the HttpClient instance.

HTTP POST is actually much more powerful than this. With an HTTP POST, we can pass
simple name/value parameters, as shown in Listing 8-3, as well as complex parameters such as
files. HTTP POST supports another request-body format known as a “multipart POST.” With this
type of POST, you can send name/value parameters as before, along with arbitrary files. Unfor-
tunately, the version of HttpClient shipped with Android does not directly support multipart
POST. To do multipart POST calls, you need to get three additional Apache open source projects:
Apache Commons IO, Mime4j, and HttpMime. You can download these projects from the fol-
lowing web sites:

	 •	 Commons IO: http://commons.apache.org/io/

	 •	 Mime4j: http://james.apache.org/mime4j/

	 •	 HttpMime: http://hc.apache.org/httpcomponents-client/httpmime/index.html

Alternatively, you can visit this site to download all of the required .jar files to do multipart
POST with Android:

http://www.sayedhashimi.com/downloads/android/multipart-android.zip

Listing 8-4 demonstrates a multipart POST using Android.

15967ch08.indd 267 6/5/09 11:16:40 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 8 ■ BUILDING aND CONSUMING SerVICeS268

Listing 8-4. Making a Multipart POST Call

import java.io.ByteArrayInputStream;
import java.io.InputStream;

import org.apache.commons.io.IOUtils;
import org.apache.http.HttpResponse;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpPost;
import org.apache.http.entity.mime.MultipartEntity;
import org.apache.http.entity.mime.content.InputStreamBody;
import org.apache.http.entity.mime.content.StringBody;
import org.apache.http.impl.client.DefaultHttpClient;

import android.app.Activity;

public class TestMultipartPost extends Activity
{
 public void executeMultipartPost()throws Exception
 {

 try {
 InputStream is = this.getAssets().open("data.xml");
 HttpClient httpClient = new DefaultHttpClient();
 HttpPost postRequest =
 new HttpPost("http://192.178.10.131/WS2/Upload.aspx");

 byte[] data = IOUtils.toByteArray(is);

 InputStreamBody isb = new InputStreamBody(new
ByteArrayInputStream(data),"uploadedFile");
 StringBody sb1 = new StringBody("someTextGoesHere");
 StringBody sb2 = new StringBody("someTextGoesHere too");

 MultipartEntity multipartContent = new MultipartEntity();
 multipartContent.addPart("uploadedFile", isb);
 multipartContent.addPart("one", sb1);
 multipartContent.addPart("two", sb2);

 postRequest.setEntity(multipartContent);
 HttpResponse res =httpClient.execute(postRequest);
 res.getEntity().getContent().close();
 } catch (Throwable e)
 {
 throw e;
 }

 }
}

15967ch08.indd 268 6/5/09 11:16:40 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 8 ■ BUILDING aND CONSUMING SerVICeS 269

■Note The multipart example uses several .jar files that are not included as part of the Android runtime. To
ensure that the .jar files will be packaged as part of your .apk file, you need to add them as external .jar files
in Eclipse: right-click your project in Eclipse, select Properties, choose Java Class Path, select the Libraries
tab, and then select Add External JARs.

Following these steps will make the .jar files available during compile time as well as runtime.

To execute a multipart POST, you need to create an HttpPost and call its setEntity() method
with a MultipartEntity instance (rather than the UrlEncodedFormEntity we created for the name/
value parameter form post). MultipartEntity represents the body of a multipart POST request.
As shown, you create an instance of a MultipartEntity and then call the addPart() method with
each part. Listing 8-4 adds three parts to the request: two string parts and an XML file.

Finally, if you are building an application that requires you to pass a multipart POST to a
web resource, you’ll likely have to debug the solution using a dummy implementation of the
service on your local workstation. You can access the local machine by using localhost or IP
address 127.0.0.1. With Android applications, however, you will not be able to use localhost
(or 127.0.0.1) because the emulator will have its own localhost. To refer to your development
workstation from the application running in the emulator, you’ll have to use your worksta-
tion’s IP address. On a Windows XP machine, you can obtain your IP address by running the
IPConfig DOS command. You would need to modify Listing 8-4 by substituting the IP address
with the IP address of your workstation.

Dealing with Exceptions
Dealing with exceptions is part of any program, but software that makes use of external
services (such as HTTP services) must pay additional attention to exceptions because the
potential for errors is magnified. There are several types of exceptions that you can expect
while making use of HTTP services. These include transport exceptions, protocol exceptions,
and timeouts. You should understand when these exceptions could occur.

Transport exceptions can occur due to a number of reasons, but the most likely scenario
(with a mobile device) is poor network connectivity. Protocol exceptions are exceptions at
the HTTP protocol layer. These include authentication errors, invalid cookies, and so on. You
can expect to see protocol exceptions if, for example, you have to supply login credentials as
part of your HTTP request but fail to do so. Timeouts, with respect to HTTP calls, come in two
flavors: connection timeouts and socket timeouts. A connection timeout can occur if the
HttpClient is not able to connect to the HTTP server—if, for example, the URL is not correct
or the server is not available. A socket timeout can occur if the HttpClient fails to receive a
response within a defined time period. In other words, the HttpClient was able to connect to
the server, but the server failed to return a response within the allocated time limit.

Now that you understand the types of exceptions that might occur, how do you deal with
them? Fortunately, the HttpClient is a robust framework that takes most of the burden off your
shoulders. In fact, the only exception types that you’ll have to worry about are the ones that
you’ll be able to manage easily. As we said earlier, there are three types of exceptions that you
can expect: transport exceptions, protocol exceptions, and timeouts. The HttpClient takes
care of transport exceptions by detecting transport issues and retrying requests (which works
very well with this type of exception). Protocol exceptions are exceptions that can generally be

15967ch08.indd 269 6/5/09 11:16:40 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 8 ■ BUILDING aND CONSUMING SerVICeS270

flushed out during development. Timeouts are the ones that you’ll have to deal with. A simple
and effective approach to dealing with both types of timeouts—connection timeouts and
socket timeouts—is to wrap the execute method of your HTTP request with a try/catch and
then retry if a failure occurs. This is demonstrated in Listing 8-5.

Listing 8-5. Implementing a Simple Retry Technique to Deal with Timeouts

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.URI;

import org.apache.http.HttpResponse;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import org.apache.http.impl.client.DefaultHttpClient;

public class TestHttpGet {

 public String executeHttpGetWithRetry() throws Exception {
 int retry = 3;

 int count = 0;
 while (count < retry) {
 count += 1;
 try {
 String response = executeHttpGet();
 /**
 * if we get here, that means we were successful and we can
 * stop.
 */
 return response;
 } catch (Exception e) {
 /**
 * if we have exhausted our retry limit
 */
 if (count < retry) {
 /**
 * we have retries remaining, so log the message and go
 * again.
 */
 System.out.println(e.getMessage());
 } else {
 System.out.println("could not succeed with retry...");
 throw e;
 }
 }
 }

15967ch08.indd 270 6/5/09 11:16:40 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 8 ■ BUILDING aND CONSUMING SerVICeS 271

 return null;
 }

 public String executeHttpGet() throws Exception {
 BufferedReader in = null;
 try {
 HttpClient client = new DefaultHttpClient();
 HttpGet request = new HttpGet();
 request.setURI(new URI("http://code.google.com/android/"));
 HttpResponse response = client.execute(request);
 in = new BufferedReader(new InputStreamReader(response.getEntity()
 .getContent()));

 StringBuffer sb = new StringBuffer("");
 String line = "";
 String NL = System.getProperty("line.separator");
 while ((line = in.readLine()) != null) {
 sb.append(line + NL);
 }
 in.close();

 String result = sb.toString();
 return result;
 } finally {
 if (in != null) {
 try {
 in.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }

 }
}

The code in Listing 8-5 shows how you can implement a simple retry technique to recover
from timeouts when making HTTP calls. The listing shows two methods: one that executes
an HTTP GET (executeHttpGet()), and another that wraps this method with the retry logic
(executeHttpGetWithRetry()). The logic is very simple. We set the number of retries we want
to attempt to 3, and then we enter a while loop. Within the loop, we execute the request. Note
that the request is wrapped with a try/catch block, and in the catch block we check whether
we have exhausted the number of retry attempts.

When using the HttpClient as part of a real-world application, you need to pay some
attention to multithreading issues that might come up. Let’s delve into this now.

15967ch08.indd 271 6/5/09 11:16:40 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 8 ■ BUILDING aND CONSUMING SerVICeS272

Addressing Multithreading Issues
The examples we’ve shown so far created a new HttpClient for each request. In practice,
however, you should create one HttpClient for the entire application and use that for all of
your HTTP communication. With one HttpClient servicing all of your HTTP requests, you
should also pay attention to multithreading issues that could surface if you make multiple
simultaneous requests through the same HttpClient. Fortunately, the HttpClient provides
facilities that make this easy—all you have to do is create the DefaultHttpClient using a
ThreadSafeClientConnManager, as shown in Listing 8-6.

Listing 8-6. Creating an HttpClient for Multithreading Purposes

// ApplicationEx.java
import org.apache.http.HttpVersion;
import org.apache.http.client.HttpClient;
import org.apache.http.conn.ClientConnectionManager;
import org.apache.http.conn.scheme.PlainSocketFactory;
import org.apache.http.conn.scheme.Scheme;
import org.apache.http.conn.scheme.SchemeRegistry;
import org.apache.http.conn.ssl.SSLSocketFactory;
import org.apache.http.impl.client.DefaultHttpClient;
import org.apache.http.impl.conn.tsccm.ThreadSafeClientConnManager;
import org.apache.http.params.BasicHttpParams;
import org.apache.http.params.HttpParams;
import org.apache.http.params.HttpProtocolParams;
import org.apache.http.protocol.HTTP;

import android.app.Application;
import android.util.Log;

public class ApplicationEx extends Application
{
 private static final String TAG = "ApplicationEx";
 private HttpClient httpClient;

 @Override
 public void onCreate()
 {
 super.onCreate();

 httpClient = createHttpClient();

 }

15967ch08.indd 272 6/5/09 11:16:40 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 8 ■ BUILDING aND CONSUMING SerVICeS 273

 @Override
 public void onLowMemory()
 {
 super.onLowMemory();

 shutdownHttpClient();
 }

 @Override
 public void onTerminate()
 {
 super.onTerminate();
 shutdownHttpClient();
 }

 private HttpClient createHttpClient()
 {
 Log.d(TAG,"createHttpClient()...");
 HttpParams params = new BasicHttpParams();
 HttpProtocolParams.setVersion(params, HttpVersion.HTTP_1_1);
 HttpProtocolParams.setContentCharset(params, HTTP.DEFAULT_CONTENT_CHARSET);
 HttpProtocolParams.setUseExpectContinue(params, true);

 SchemeRegistry schReg = new SchemeRegistry();
 schReg.register(new Scheme("http",
 PlainSocketFactory.getSocketFactory(), 80));
 schReg.register(new Scheme("https",
 SSLSocketFactory.getSocketFactory(), 443));
 ClientConnectionManager conMgr = new
 ThreadSafeClientConnManager(params,schReg);

 return new DefaultHttpClient(conMgr, params);
 }

 public HttpClient getHttpClient() {
 return httpClient;
 }

 private void shutdownHttpClient()
 {
 if(httpClient!=null && httpClient.getConnectionManager()!=null)
 {
 httpClient.getConnectionManager().shutdown();
 }
 }
}

15967ch08.indd 273 6/5/09 11:16:40 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 8 ■ BUILDING aND CONSUMING SerVICeS274

// HttpActivity.java

import java.net.URI;

import org.apache.http.HttpResponse;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import org.apache.http.util.EntityUtils;

import android.app.Activity;
import android.os.Bundle;
import android.util.Log;

public class HttpActivity extends Activity
{
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);

 Log.d("ServicesDemoActivity", "a debug statement");
 getHttpContent();
 }
 public void getHttpContent()
 {
 try {
 ApplicationEx app = (ApplicationEx)this.getApplication();
 HttpClient client = app.getHttpClient();
 HttpGet request = new HttpGet();
 request.setURI(new URI("http://www.google.com/"));
 HttpResponse response = client.execute(request);

 String page=EntityUtils.toString(response.getEntity());
 System.out.println(page);
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }

 }

 }

15967ch08.indd 274 6/5/09 11:16:40 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 8 ■ BUILDING aND CONSUMING SerVICeS 275

If your application needs to make more than a few HTTP calls, you should create an
HttpClient that services all of your HTTP requests. One way to do this is to take advantage of the
fact that each Android application has an associated application object. By default, if you don’t
define a custom application object, Android uses android.app.Application. Here’s the interest-
ing thing about the application object: there will always be exactly one application object for
your application and all of your components can access it (using the global context object).

For example, from an activity class, you can call getApplication() to get the application
object for your application. The idea here is that because the application is a singleton, and
always available, we can extend that class and create our HttpClient there. We then provide
an accessor method for all of the components in our application to get the HttpClient. This
is what we have done in Listing 8-6. First notice that we have two classes defined in the list-
ing (each should be placed in a separate Java file): one is our custom application object, and
the other is a typical component—an activity class. In the ApplicationEx class we extend
android.app.Application and then create our HttpClient in the onCreate() method. The class
then provides an accessor method for components to obtain a reference to the client. In the
HttpActivity class, we get a reference to the global application object and then cast that to
our ApplicationEx class. We then call the getHttpClient() method and use that to make an
HTTP call.

Now take a look at the createHttpClient() method of ApplicationEx. This method
is responsible for creating our singleton HttpClient. Notice that when we instantiate the
DefaultHttpClient(), we pass in a ClientConnectionManager. The ClientConnectionManager
is responsible for managing HTTP connections for the HttpClient. Because we want to use a
single HttpClient for all of the HTTP requests, we create a ThreadSafeClientConnManager.

Note that when you override or extend the default application object, you also have to
modify the application node in the AndroidManifest.xml file by setting the android:name attri-
bute like this:

 <application android:icon="@drawable/icon"
android:label="@string/app_name"
android:name="ApplicationEx">

■Note You should also call the shutdown() method on the connection manager as demonstrated in
Listing 8-6.

This concludes our discussion of using HTTP services with the HttpClient. In the sections
that follow, we will turn our focus to another interesting part of the Android Platform: writ-
ing background/long-running services. Although not immediately obvious, the processes of
making HTTP calls and writing Android services are linked in that you will do a lot of integra-
tion from within Android services. Take, for example, a simple mail-client application. On an
Android device, this type of application will likely be composed of two pieces: one that will
provide the UI to the user, and another to poll for mail messages. The polling will likely have to
be done within a background service. The component that polls for new messages will be an
Android service, which will in turn use the HttpClient to perform the work.

Now, let’s get on with writing services.

15967ch08.indd 275 6/5/09 11:16:40 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 8 ■ BUILDING aND CONSUMING SerVICeS276

Doing Interprocess Communication
Android supports the concept of services. Services are components that run in the back-
ground, without a user interface. You can think of these components as Windows services or
Unix services. Similar to these types of services, Android services are always available but don’t
have to be actively doing something.

Android supports two types of services: local services and remote services. A local service is
a service that is not accessible from other applications running on the device. Generally, these
types of services simply support the application that is hosting the service. A remote service is
accessible from other applications in addition to the application hosting the service. Remote
services define themselves to clients using Android Interface Definition Language (AIDL).

Let’s begin our exploration of services by writing a simple service.

Creating a Simple Service
To build a service, you extend the abstract class android.app.Service and put a service-
configuration entry in your application’s manifest file. Listing 8-7 shows an example.

Listing 8-7. A Simple Android Service Definition

import android.app.Service;
public class TestService1 extends Service
{
 private static final String TAG = "TestService1";

 @Override
 public void onCreate() {
 Log.d(TAG, "onCreate");
 super.onCreate();
 }

 @Override
 public IBinder onBind(Intent intent) {
 Log.d(TAG, "onBind");
 return null;
 }
}
// service definition entry: must go in the AndroidManifest.xml file.
<service android:name="TestService1"></service>

The service in Listing 8-7 isn’t meant for practical use, but it serves our purpose of show-
ing how a service is defined. To create a service, you write a class that extends android.app.
Service and implements the onBind() method. You then put a service-definition entry in
your AndroidManifest.xml file. That is how you implement a service. The next obvious ques-
tion, then, is this: how do you call the service? The answer depends on the service’s client and
requires a bit more discussion on services.

15967ch08.indd 276 6/5/09 11:16:40 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 8 ■ BUILDING aND CONSUMING SerVICeS 277

Understanding Services in Android
We can gain more insight into the concept of a service by looking at the public methods of
android.app.Service (see Listing 8-8).

Listing 8-8. The Public Methods of a Service

Application getApplication();
abstract IBinder onBind(Intent intent);
void onConfigurationChanged(Configuration newConfig);
void onCreate();
void onDestroy();
void onLowMemory();
void onRebind(Intent intent);
void onStart(Intent intent, int startId);
boolean onUnbind(Intent intent);
final void setForeground(boolean isForeground);
final void stopSelf();
final void stopSelf(int startId);
final boolean stopSelfResult(int startId);

The getApplication() method returns the application that implements the service. The
onBind() method provides an interface for external applications running on the same device
to talk to the service. onConfigurationChanged() allows the service to reconfigure itself if the
device configuration changes.

The system calls onCreate() when the service is first created, but before calling onStart().
This process, which resembles the process for creating an activity, provides a way for the
service to perform one-time initialization at startup. (See the “Examining the Application
Lifecycle” section of Chapter 2 for details on creating an activity.) For example, if you create
a background thread, do so in the onCreate() method and make sure to stop the thread in
onDestroy(). The system calls onCreate(), then calls onStart(), then calls onDestroy() when
the service is being shut down. The onDestroy() method provides a mechanism for the service
to do final cleanup prior to going down.

Note that onStart(), onCreate(), and onDestroy() are called by the system; you should not
call them directly. Moreover, if you override any of the on*() methods in your service class, be
sure to call the superclass’s version from yours. The various versions of stopSelf() provide a
mechanism for the application to stop the service. A client can also call Context.stopService()
to stop a service. We will talk about these methods and the others in the “Understanding Local
Services” section.

Android supports the concept of a service for two reasons: first, to allow you to implement
background tasks easily; second, to allow you to do interprocess communication between
applications running on the same device. These two reasons correspond to the two types of
services that Android supports: local services and remote services. An example of the first case
might be a local service implemented as part of the e-mail application that we mentioned
earlier. The service would poll the mail server for new messages and notify the user when new
mail arrives. An example of the second case might be a router application. Suppose you have
several applications running on a device and you need a service to accept messages and route
them to various destinations. Rather than repeat the logic in every application, you could write
a remote router service and have the applications talk to the service.

15967ch08.indd 277 6/5/09 11:16:40 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 8 ■ BUILDING aND CONSUMING SerVICeS278

There are some important differences between local services and remote services.
Specifically, if a service is strictly used by the components in the same process (to run back-
ground tasks), then the clients must start the service by calling Context.startService(). This
type of service is a local service because its purpose is, generally, to run background tasks for
the application that is hosting the service. If the service supports the onBind() method, it’s a
remote service that can be called via interprocess communication (Context.bindService()).
We also call remote services AIDL-supporting services because clients communicate with the
service using AIDL.

Although the interface of android.app.Service supports both local and remote services,
it’s not a good idea to provide one implementation of a service to support both types. The
reason for this is that each type of service has a predefined lifecycle; mixing the two, although
allowed, can cause errors.

Now we can begin a detailed examination of the two types of services. We will start by
talking about local services and then discuss remote services (AIDL-supporting services). As
mentioned before, local services are services that are called only by the application that hosts
them. Remote services are services that support a Remote Procedure Call (RPC) mechanism.
These services allow external clients, on the same device, to connect to the service and use its
facilities.

■Note The second type of service in Android is known by several names: remote service, AIDL-supporting
service, AIDL service, external service, and RPC service. These terms all refer to the same type of service—
one that’s meant to be accessed remotely by other applications running on the device.

Understanding Local Services
Local services are services that are started via Context.startService(). Once started, these
types of services will continue to run until a client calls Context.stopService() on the ser-
vice or the service itself calls stopSelf(). Note that when Context.startService() is called,
the system will instantiate the service and call the service’s onStart() method. Keep in mind
that calling Context.startService() after the service has been started (that is, while it’s run-
ning) will not result in another instance of the service, but doing so will invoke the service’s
onStart() method. Here are a couple examples of local services:

	 •	 A	service	to	retrieve	data	over	the	network	(such	as	the	Internet)	based	on	a	timer	(to	
either upload or download information)

	 •	 A	task-executor	service	that	lets	your	application’s	activities	submit	jobs	and	queue	
them for processing

Listing 8-9 demonstrates a local service by implementing a service that executes back-
ground tasks. The listing contains all of the artifacts required to create and consume the
service: BackgroundService.java, the service itself; MainActivity.java, an activity class to call
the service; and main.xml, a layout file for the activity.

15967ch08.indd 278 6/5/09 11:16:40 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 8 ■ BUILDING aND CONSUMING SerVICeS 279

Listing 8-9. Implementing a Local Service

// BackgroundService.java

import android.app.Notification;
import android.app.NotificationManager;
import android.app.PendingIntent;
import android.app.Service;
import android.content.Intent;
import android.os.IBinder;

public class BackgroundService extends Service
{
 private NotificationManager notificationMgr;

 @Override
 public void onCreate() {
 super.onCreate();

 notificationMgr =(NotificationManager)getSystemService(
 NOTIFICATION_SERVICE);

 displayNotificationMessage("starting Background Service");

 Thread thr = new Thread(null, new ServiceWorker(), "BackgroundService");
 thr.start();

 }

 class ServiceWorker implements Runnable
 {
 public void run() {
 // do background processing here...

 // stop the service when done...
 // BackgroundService.this.stopSelf();
 }
 }

 @Override
 public void onDestroy()
 {
 displayNotificationMessage("stopping Background Service");
 super.onDestroy();

 }

15967ch08.indd 279 6/5/09 11:16:40 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 8 ■ BUILDING aND CONSUMING SerVICeS280

 @Override
 public void onStart(Intent intent, int startId) {
 super.onStart(intent, startId);

 }

 @Override
 public IBinder onBind(Intent intent) {
 return null;
 }

 private void displayNotificationMessage(String message)
 {

 Notification notification = new Notification(R.drawable.note,
message,System.currentTimeMillis());

 PendingIntent contentIntent =
PendingIntent.getActivity(this, 0,new Intent(this, MainActivity.class), 0);

 notification.setLatestEventInfo(this, "Background Service",message,
contentIntent);

 notificationMgr.notify(R.string.app_notification_id, notification);
 }

}

// MainActivity.java

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;

public class MainActivity extends Activity
{
 private static final String TAG = "MainActivity";

15967ch08.indd 280 6/5/09 11:16:40 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 8 ■ BUILDING aND CONSUMING SerVICeS 281

 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 Log.d(TAG, "starting service");

 Button bindBtn = (Button)findViewById(R.id.bindBtn);
 bindBtn.setOnClickListener(new OnClickListener(){

 @Override
 public void onClick(View arg0) {
 startService(new Intent(MainActivity.this,
 BackgroundService.class));
 }});

 Button unbindBtn = (Button)findViewById(R.id.unbindBtn);
 unbindBtn.setOnClickListener(new OnClickListener(){

 @Override
 public void onClick(View arg0) {
 stopService(new Intent(MainActivity.this,
 BackgroundService.class));
 }});

 }
}
// main.xml (layout file for MainActivity.java)

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<Button android:id="@+id/bindBtn"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Bind"
 />

 <Button android:id="@+id/unbindBtn"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="UnBind"
 />
</LinearLayout>

15967ch08.indd 281 6/5/09 11:16:40 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 8 ■ BUILDING aND CONSUMING SerVICeS282

Note that Listing 8-9 uses an activity to interface with the service, but any component in
your application can use the service. This includes other services, activities, generic classes,
and so on. The example creates a user interface with two buttons, labeled Bind and UnBind.
Clicking the Bind button will start the service by calling startService(); clicking UnBind will
stop the service by calling stopService(). Now let’s talk about the meat of the example: the
BackgroundService.

The BackgroundService is a typical example of a service that is used by the components of
the application that is hosting the service. In other words, the application that is running the
service is also the only consumer. Because the service does not support clients from outside its
process, the service is a local service. And because it’s a local service as opposed to a remote
service, it returns null in the bind() method. Therefore, the only way to bind to this service
is to call Context.startService(). The critical methods of a local service are: onCreate(),
onStart(), stop*(), and onDestroy().

In the onCreate() method of the BackgroundService, we create a thread that does the
service’s heavy lifting. We need the application’s main thread to deal with user interface activi-
ties, so we delegate the service’s work to a secondary thread. Also note that we create and start
the thread in onCreate() rather than onStart(). We do this because onCreate() is called only
once, and we want the thread to be created only once during the life of the service. onStart()
can be called more than once, so it doesn’t suit our needs here. We don’t do anything useful in
the implementation of the thread’s run method, but this would be the place to make an HTTP
call, query a database, and so on.

The BackgroundService also uses the NotificationManager class to send notifications to
the user when the service is started and stopped. This is one way for a local service to com-
municate information back to the user. To send notifications to the user, you obtain the
notification manager by calling getSystemService(NOTIFICATION_SERVICE). Messages from the
notification manager appear in the status bar.

To run the example, you need to create the BackgroundService.java service, the
MainActivity.java activity class, and the main.xml layout file. You’ll also need to create an
icon named note and place it within your project’s drawable folder. Plus, you need an appli-
cation-level unique ID (integer) for the notification manager. You can create a unique ID by
adding a dummy string constant to your string resources (a string at res/values/strings.xml).
The unique ID is passed to the notification manager when you call the notify() method. In
our example, we use the following:

<string name="app_notification_id">notification_id</string>

This concludes our discussion of local services. Let’s dissect AIDL services—the more
complicated type of service.

Understanding AIDL Services
In the previous section, we showed you how to write an Android service that is consumed
by the application that hosts the service. Now we are going to show you how to build a ser-
vice that can be consumed by other processes via Remote Procedure Call (RPC). As with
many other RPC-based solutions, in Android you need an Interface Definition Language
(IDL) to define the interface that will be exposed to clients. In the Android world, this IDL is
called Android Interface Definition Language, or AIDL. To build a remote service, you do the
following:

15967ch08.indd 282 6/5/09 11:16:40 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 8 ■ BUILDING aND CONSUMING SerVICeS 283

 1. Write an AIDL file that defines your interface to clients. The AIDL file uses Java syntax
and has an .aidl extension.

 2. Add the AIDL file to your Eclipse project. The Android Eclipse plug-in will call the AIDL
compiler to generate a Java interface from the AIDL file (the AIDL compiler is called as
part of the build process).

 3. Implement a service and return the interface from the onBind() method.

 4. Add the service configuration to your AndroidManifest.xml file. The sections that follow
show you how to execute each step.

Defining a Service Interface in AIDL
To demonstrate an example of a remote service, we are going to write a stock-quoter service.
This service will provide a method that takes a ticker symbol and returns the stock value. To
write a remote service in Android, the first step is to define the service definition in an AIDL
file. Listing 8-10 shows the AIDL definition of IStockQuoteService.

Listing 8-10. The AIDL Definition of the Stock-Quoter Service

package com.syh;
interface IStockQuoteService
{
 double getQuote(String ticker);
}

The IStockQuoteService accepts the stock-ticker symbol as a string and returns the cur-
rent stock value as a double. When you create the AIDL file, the Android Eclipse plug-in runs
the AIDL compiler to process your AIDL file (as part of the build process). If your AIDL file
compiles successfully, the compiler generates a Java interface suitable for RPC communica-
tion. Note that the generated file will be in the package named in your AIDL file—com.syh, in
this case.

Listing 8-11 shows the generated Java file for our IStockQuoteService. Note that if you are
using the Android 1.5 SDK, the generated file will be within the gen folder. See Chapter 12 for
details.

Listing 8-11. The Compiler-Generated Java File

package com.syh;
import java.lang.String;
import android.os.RemoteException;
import android.os.IBinder;
import android.os.IInterface;
import android.os.Binder;
import android.os.Parcel;
/**
 *
 * @author sh
 *
 */

15967ch08.indd 283 6/5/09 11:16:40 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 8 ■ BUILDING aND CONSUMING SerVICeS284

public interface IStockQuoteService extends android.os.IInterface
{
/** Local-side IPC implementation stub class. */
public static abstract class Stub extends android.os.Binder
implements com.syh.IStockQuoteService
{
private static final java.lang.String DESCRIPTOR = "com.syh.IStockQuoteService";
/** Construct the stub at attach it to the interface. */
public Stub()
{
this.attachInterface(this, DESCRIPTOR);
}
/**
 * Cast an IBinder object into an IStockQuoteService interface,
 * generating a proxy if needed.
 */
public static com.syh.IStockQuoteService asInterface(android.os.IBinder obj)
{
if ((obj==null)) {
return null;
}
com.syh.IStockQuoteService in = (com.syh.IStockQuoteService)
obj.queryLocalInterface(DESCRIPTOR);
if ((in!=null)) {
return in;
}
return new com.syh.IStockQuoteService.Stub.Proxy(obj);
}
public android.os.IBinder asBinder()
{
return this;
}
public boolean onTransact(int code,
android.os.Parcel data, android.os.Parcel reply,
 int flags) throws android.os.RemoteException
{
switch (code)
{
case INTERFACE_TRANSACTION:
{
reply.writeString(DESCRIPTOR);
return true;
}
case TRANSACTION_getQuote:
{
data.enforceInterface(DESCRIPTOR);
java.lang.String _arg0;

15967ch08.indd 284 6/5/09 11:16:40 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 8 ■ BUILDING aND CONSUMING SerVICeS 285

_arg0 = data.readString();
double _result = this.getQuote(_arg0);
reply.writeNoException();
reply.writeDouble(_result);
return true;
}
}
return super.onTransact(code, data, reply, flags);
}
private static class Proxy implements com.syh.IStockQuoteService
{
private android.os.IBinder mRemote;
Proxy(android.os.IBinder remote)
{
mRemote = remote;
}
public android.os.IBinder asBinder()
{
return mRemote;
}
public java.lang.String getInterfaceDescriptor()
{
return DESCRIPTOR;
}
public double getQuote(java.lang.String ticker) throws android.os.RemoteException
{
android.os.Parcel _data = android.os.Parcel.obtain();
android.os.Parcel _reply = android.os.Parcel.obtain();
double _result;
try {
_data.writeInterfaceToken(DESCRIPTOR);
_data.writeString(ticker);
mRemote.transact(Stub.TRANSACTION_getQuote, _data, _reply, 0);
_reply.readException();
_result = _reply.readDouble();
}
finally {
_reply.recycle();
_data.recycle();
}
return _result;
}
}
static final int TRANSACTION_getQuote = (IBinder.FIRST_CALL_TRANSACTION + 0);
}
public double getQuote(java.lang.String ticker) throws android.os.RemoteException;
}

15967ch08.indd 285 6/5/09 11:16:41 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 8 ■ BUILDING aND CONSUMING SerVICeS286

Note the following important points regarding the generated classes:

	 •	 The	interface	we	defined	in	the	AIDL	file	is	implemented	as	an	interface	in	the	gener-
ated code (that is, there is an interface named IStockQuoteService).

	 •	 A	static final abstract class named Stub extends android.os.Binder and implements
IStockQuoteService. Note that the class is an abstract class.

	 •	 An	inner	class	named	Proxy implements the IStockQuoteService that proxies the
Stub class.

	 •	 The	AIDL	file	must	reside	in	the	package	where	the	generated	files	are	supposed	to	be	
(as specified in the AIDL file’s package declaration).

Now let’s move on and implement the AIDL interface in a service class.

Implementing an AIDL Interface
In the previous section, we defined an AIDL file for a stock-quoter service and generated the
binding file. Now we are going to provide an implementation of that service. To implement
the service’s interface, we need to write a class that extends android.app.Service and imple-
ments the IStockQuoteService interface. To expose the service to clients, we need to provide
an implementation of the onBind() method and add some configuration information to the
AndroidManifest.xml file. Listing 8-12 shows an implementation of the IStockQuoteService
interface.

Listing 8-12. The IStockQuoteService Service Implementation

// StockQuoteService.java

package com.syh;

import android.app.Notification;
import android.app.NotificationManager;
import android.app.PendingIntent;
import android.app.Service;
import android.content.Intent;
import android.os.IBinder;
import android.os.RemoteException;
public class StockQuoteService extends Service
{
 private NotificationManager notificationMgr;
 public class StockQuoteServiceImpl extends IStockQuoteService.Stub
 {
 @Override
 public double getQuote(String ticker) throws RemoteException
 {
 return 20.0;
 }

15967ch08.indd 286 6/5/09 11:16:41 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 8 ■ BUILDING aND CONSUMING SerVICeS 287

 }

 @Override
 public void onCreate() {
 super.onCreate();

 notificationMgr =
(NotificationManager)getSystemService(NOTIFICATION_SERVICE);

 displayNotificationMessage("onCreate() called in StockQuoteService");
 }
 @Override
 public void onDestroy()
 {
 displayNotificationMessage("onDestroy() called in StockQuoteService");
 super.onDestroy();

 }

 @Override
 public void onStart(Intent intent, int startId) {
 super.onStart(intent, startId);

 }
 @Override
 public IBinder onBind(Intent intent)
 {
 displayNotificationMessage("onBind() called in StockQuoteService");
 return new StockQuoteServiceImpl();
 }
 private void displayNotificationMessage(String message)
 {

 Notification notification =
new Notification(R.drawable.note, message,System.currentTimeMillis());

 PendingIntent contentIntent =
PendingIntent.getActivity(this, 0,new Intent(this, MainActivity.class), 0);

 notification.setLatestEventInfo(this, "StockQuoteService",message,
contentIntent);

 notificationMgr.notify(R.string.app_notification_id, notification);
 }

}

15967ch08.indd 287 6/5/09 11:16:41 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 8 ■ BUILDING aND CONSUMING SerVICeS288

The StockQuoteService.java class in Listing 8-12 resembles the local BackgroundService
we created earlier. The primary difference is that we now implement the onBind() method.
Recall that the Stub class generated from the AIDL file was an abstract class and that it imple-
mented the IStockQuoteService interface. In our implementation of the service, we have an
inner class that extends the Stub class called StockQuoteServiceImpl. This class serves as the
remote-service implementation, and an instance of this class is returned from the onBind()
method. With that, we have a functional AIDL service, although external clients cannot con-
nect to it yet.

To expose the service to clients, we need to add a service declaration in the AndroidManifest.
xml file, and this time, we need an intent-filter to expose the service. Listing 8-13 shows the
service declaration for the StockQuoteService.

Listing 8-13. Manifest Declaration for the IStockQuoteService

<service android:name="StockQuoteService">

<intent-filter>
 <action android:name="com.syh.IStockQuoteService" />
 </intent-filter>

</service>

As with all services, we define the service we want to expose with a <service> tag. For an
AIDL service, we also need to add an <intent-filter> with an <action> entry for the service
interface we want to expose.

With this in place, we have everything we need to deploy the service. Let’s now look at
how we would call the service from another application (on the same device, of course).

Calling the Service from a Client Application
When a client talks to a service, there must be a protocol or contract between the two. With
Android, the contract is AIDL. So the first step in consuming a service is to take the service’s
AIDL file and copy it to your client project. When you copy the AIDL file to the client project,
the AIDL compiler creates the same interface-definition file that was created when the service
was implemented (in the service-implementation project). This exposes to the client all of the
methods, parameters, and return types on the service. Let’s create a new project and copy the
AIDL file.

 1. Create a new Android project named ServiceClient.

 2. Create a new Java package named com.syh.

 3. Copy the IStockQuoteService.aidl file to the package. Note that after you copy the file
to the project, the AIDL compiler will generate the associated Java file.

The service interface that you regenerate serves as the contract between the client and
the service. The next step is to get a reference to the service so we can call the getQuote()
method. With remote services, we have to call the bindService() method rather than the
startService() method. Listing 8-14 shows an activity class that acts as a client of the
IStockQuoteService service. The listing also contains the layout file for the activity.

15967ch08.indd 288 6/5/09 11:16:41 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 8 ■ BUILDING aND CONSUMING SerVICeS 289

To follow along, create a layout file called main.xml and copy the contents of the main.
xml section from Listing 8-14. Then create a new Java package named com.sayed and create an
activity called MainActivity within the package. Finally, copy the contents of the MainActivity
section from Listing 8-14 to your activity. Realize that the package name of the activity is not
that important—you can put the activity in any package you’d like. However, the AIDL arti-
facts that you create are package-sensitive because the AIDL compiler generates code from
the contents of the AIDL file.

Listing 8-14. A Client of the IStockQuoteService Service

package com.sayed;

import com.syh.IStockQuoteService;

import android.app.Activity;
import android.content.ComponentName;
import android.content.Context;
import android.content.Intent;
import android.content.ServiceConnection;
import android.os.Bundle;
import android.os.IBinder;
import android.os.RemoteException;
import android.util.Log;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.Toast;

public class MainActivity extends Activity {

 private IStockQuoteService stockService = null;
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 Button bindBtn = (Button)findViewById(R.id.bindBtn);
 bindBtn.setOnClickListener(new OnClickListener(){

 @Override
 public void onClick(View view) {
 bindService(new Intent(IStockQuoteService.class
 .getName()),
 serConn, Context.BIND_AUTO_CREATE);

15967ch08.indd 289 6/5/09 11:16:41 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 8 ■ BUILDING aND CONSUMING SerVICeS290

 }});

 Button unbindBtn = (Button)findViewById(R.id.unbindBtn);
 unbindBtn.setOnClickListener(new OnClickListener(){

 @Override
 public void onClick(View view) {
 unbindService(serConn);
 }});
 }

 private ServiceConnection serConn = new ServiceConnection() {

 @Override
 public void onServiceConnected(ComponentName name, IBinder service)
 {
 stockService = IStockQuoteService.Stub.asInterface(service);
 double val;
 try {
 val = stockService.getQuote("syh");
 Toast.makeText(MainActivity.this, "Value from service is "+val+"",
Toast.LENGTH_SHORT).show();
 } catch (RemoteException ee) {
 Log.e("MainActivity", ee.getMessage(), ee);
 }

 }

 @Override
 public void onServiceDisconnected(ComponentName name) {

 }

 };
}

// main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >

15967ch08.indd 290 6/5/09 11:16:41 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 8 ■ BUILDING aND CONSUMING SerVICeS 291

<Button android:id="@+id/bindBtn"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Bind"
 />

 <Button android:id="@+id/unbindBtn"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="UnBind"
 />
</LinearLayout>

The activity wires up the onClick listener for two buttons: Bind and UnBind. When
the user clicks the Bind button, the activity calls the bindService() method. Similarly, when
the user clicks UnBind, the activity calls the unbindService() method. Notice that three
parameters are passed to the bindService() method: the name of the AIDL service, a
ServiceConnection instance, and a flag to autocreate the service.

With an AIDL service, you need to provide an implementation of the ServiceConnection
interface. This interface defines two methods: one called by the system when a connection to
the service has been established, and one called when the connection to the service has been
destroyed. In our activity implementation, we define a private anonymous member that
implements the ServiceConnection for the IStockQuoteService. When we call the bindService()
method, we pass in the reference to this member. When the connection to the service is
established, we obtain a reference to the IStockQuoteService using the Stub and then call the
getQuote() method.

Note that the bindService() call is an asynchronous call. It is asynchronous because the
process or service might not be running and thus might have to be created or started. Because
bindService() is asynchronous, the platform provides the ServiceConnection callback so we
know when the service has been started and when the service is no longer available.

Now you know how to create and consume an AIDL interface. Before we move on and
complicate matters further, let’s review what it takes to build a simple local service vs. an
AIDL service. A local service is a service that does not support onBind()—it returns null from
onBind(). This type of service is accessible only to the components of the application that is
hosting the service. You call local services by calling startService().

On the other hand, an AIDL service is a service that can be consumed both by com-
ponents within the same process and by those that exist in other applications. This type of
service defines a contract between itself and its clients in an AIDL file. The service implements
the AIDL contract, and clients bind to the AIDL definition. The service implements the con-
tract by returning an implementation of the AIDL interface from the onBind() method. Clients
bind to an AIDL service by calling bindService() and they disconnect from the service by call-
ing unbindService().

In our service examples thus far, we have strictly dealt with passing simple Java primitive
types. Android services actually support passing complex types, too. This is very useful, espe-
cially for AIDL services, because you might have an open-ended number of parameters that
you want to pass to a service and it’s unreasonable to pass them all as simple primitives.
It makes more sense to package them as complex types and then pass them to the service.

Let’s see how we can pass complex types to services.

15967ch08.indd 291 6/5/09 11:16:41 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 8 ■ BUILDING aND CONSUMING SerVICeS292

Passing Complex Types to Services
Passing complex types to and from services requires more work than passing Java primitive
types. Before embarking on this work, you should get an idea of AIDL’s support for nonprimi-
tive types:

	 •	 AIDL	supports	String and CharSequence.

	 •	 AIDL	allows	you	to	pass	other	AIDL	interfaces,	but	you	need	to	have	an	import state-
ment for each AIDL interface you reference (even if the referenced AIDL interface is in
the same package).

	 •	 AIDL	allows	you	to	pass	complex	types	that	implement	the	android.os.Parcelable
interface. You need to have an import statement in your AIDL file for these types.

	 •	 AIDL	supports	java.util.List and java.util.Map, with a few restrictions. The
allowable data types for the items in the collection include Java primitive, String,
CharSequence, or android.os.Parcelable. You do not need import statements for List
or Map, but you do need them for the Parcelables.

	 •	 Nonprimitive	types,	other	than	String, require a directional indicator. Directional indi-
cators include in, out, and inout. in means the value is set by the client, out means the
value is set by the service, and inout means both the client and service set the value.

The Parcelable interface tells the Android runtime how to serialize and deserialize objects
during the marshalling and unmarshalling process. Listing 8-15 shows a Person class that
implements the Parcelable interface.

Listing 8-15. Implementing the Parcelable Interface

package com.syh;
import android.os.Parcel;
import android.os.Parcelable;

public class Person implements Parcelable {
 private int age;
 private String name;
 public static final Parcelable.Creator<Person> CREATOR =
new Parcelable.Creator<Person>() {
 public Person createFromParcel(Parcel in) {
 return new Person(in);
 }

 public Person[] newArray(int size) {
 return new Person[size];
 }
 };

 public Person() {
 }

15967ch08.indd 292 6/5/09 11:16:41 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 8 ■ BUILDING aND CONSUMING SerVICeS 293

 private Person(Parcel in) {
 readFromParcel(in);
 }

 @Override
 public int describeContents() {
 return 0;
 }

 @Override
 public void writeToParcel(Parcel out, int flags) {
 out.writeInt(age);
 out.writeString(name);
 }

 public void readFromParcel(Parcel in) {
 age = in.readInt();
 name = in.readString();
 }

 public int getAge() {
 return age;
 }

 public void setAge(int age) {
 this.age = age;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

}

The Parcelable interface defines the contract for hydration and dehydration of objects
during the marshalling/unmarshalling process. Underlying the Parcelable interface is the
Parcel container object. The Parcel class is a fast serialization/deserialization mechanism spe-
cially designed for interprocess communication within Android. The class provides methods
that you use to flatten your members to the container and to expand the members back from
the container. To properly implement an object for interprocess communication, we have to
do the following:

15967ch08.indd 293 6/5/09 11:16:41 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 8 ■ BUILDING aND CONSUMING SerVICeS294

 1. Implement the Parcelable interface. This means that you implement writeToParcel()
and readFromParcel(). The write method will write the object to the parcel and the
read method will read the object from the parcel. Note that the order in which you
write properties must be the same as the order in which you read them.

 2. Add a static final property to the class with the name CREATOR. The property needs to
implement the android.os.Parcelable.Creator<T> interface.

 3. Provide a constructor for the Parcelable that knows how to create the object from the
Parcel.

 4. Define Parcelable classes in a file called project.aidl in your project’s root directory.
The AIDL compiler will look for this file when compiling your AIDL files. The Android
Eclipse plug-in provides a tool that you can invoke to generate the project.aidl file. To
invoke the tool, right-click your project in Eclipse and select Android Tools ➤ Create
Aidl preprocess file for parcelable classes. An example of a project.aidl file is shown in
Listing 8-16.

■Note Seeing Parcelable might have triggered the question, why is Android not using the built-in Java
serialization mechanism? It turns out that the Android team came to the conclusion that the serialization in
Java is far too slow to satisfy Android’s interprocess-communication requirements. So the team built the
Parcelable solution. The Parcelable approach requires that you explicitly serialize the members of your
class, but in the end, you get a much faster serialization of your objects.

Also realize that Android provides two mechanisms that allow you to pass data to another process. The
first is to pass a bundle to an activity using an intent, and the second is to pass a Parcelable to a service.
These two mechanisms should not be confused and are not interchangeable. That is, the Parcelable is
not meant to be passed to an activity. If you want to start an activity and pass it some data, use a bundle.
Parcelable is meant to be used only as part of an AIDL definition.

Listing 8-16. An Example of a project.aidl File

parcelable com.syh.Person

As shown, the project.aidl file will contain an entry for each Parcelable in your project.
In this case, we have just one Parcelable: Person. Note that the tool that generates the project.
aidl file, which ships with the 1.0 version of the SDK, emits comments in the project.aidl
file. If you add a Parcelable to your project and the project fails to compile, you will have to
remove the comments from the file (leaving only the Parcelable entries). After you remove the
comments, you will have to clean the project and rebuild it in Eclipse.

Now let’s use the Person class in a remote service. To keep things simple, we will modify
our IStockQuoteService to take an input parameter of type Person. The idea is that clients
will pass a Person to the service to tell the service who is requesting the quote. The new
IStockQuoteService.aidl looks like Listing 8-17.

15967ch08.indd 294 6/5/09 11:16:41 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 8 ■ BUILDING aND CONSUMING SerVICeS 295

Listing 8-17. Passing Parcelables to Services

package com.syh;
import com.syh.Person;

interface IStockQuoteService
{
 String getQuote(in String ticker,in Person requester);
}

The getQuote() method now accepts two parameters: the stock’s ticker symbol, and a
Person object to specify who is making the request. Note that we have directional indicators
on the parameters because the parameters are nonprimitive types, and that we have an import
statement for the Person class. Realize that the Person class is also in the same package as the
service definition (com.syh).

The service implementation now looks like Listing 8-18.

Listing 8-18. The New StockQuoteService Implementation

import android.app.Notification;
import android.app.NotificationManager;
import android.app.PendingIntent;
import android.app.Service;
import android.content.Intent;
import android.os.IBinder;
import android.os.RemoteException;

public class StockQuoteService extends Service
{
 private NotificationManager notificationMgr;

 public class StockQuoteServiceImpl extends IStockQuoteService.Stub
 {

 @Override
 public String getQuote(String ticker, Person requester)
 throws RemoteException {
 return "Hello "+requester.getName()+"! Quote for "+ticker+" is 20.0";
 }

 }

 @Override
 public void onCreate() {
 super.onCreate();

 notificationMgr =

15967ch08.indd 295 6/5/09 11:16:41 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 8 ■ BUILDING aND CONSUMING SerVICeS296

(NotificationManager)getSystemService(NOTIFICATION_SERVICE);

 displayNotificationMessage("onCreate() called in StockQuoteService");
 }
 @Override
 public void onDestroy()
 {
 displayNotificationMessage("onDestroy() called in StockQuoteService");
 super.onDestroy();

 }

 @Override
 public void onStart(Intent intent, int startId) {
 super.onStart(intent, startId);

 }
 @Override
 public IBinder onBind(Intent intent)
 {
 displayNotificationMessage("onBind() called in StockQuoteService");
 return new StockQuoteServiceImpl();
 }
 private void displayNotificationMessage(String message)
 {

 Notification notification = new Notification(R.drawable.note,
message,System.currentTimeMillis());

 PendingIntent contentIntent =
PendingIntent.getActivity(this, 0,new Intent(this, MainActivity.class), 0);

 notification.setLatestEventInfo(this, "StockQuoteService",message,
contentIntent);

 notificationMgr.notify(R.string.app_notification_id, notification);
 }

}

The only difference between this implementation and the previous one is that now we
return the stock value as a string and not a double. The string returned to the user contains the
name of the requester from the Person object, which demonstrates that we read the value sent
from the client and that the Person object was passed correctly to the service.

To implement a client that passes the Person object to the service, we need to copy every-
thing that the client needs to the client project. In our previous example, all we needed was
the IStockQuoteService.aidl file. Now we also need to copy the Person.java file because the
Person object is now part of the interface. After you copy the two files to the client project,

15967ch08.indd 296 6/5/09 11:16:41 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 8 ■ BUILDING aND CONSUMING SerVICeS 297

you need to re-create the project.aidl file and remove the comments from it because of the
bug we discussed earlier. Also note that after you remove the comments, you will need to do a
clean and rebuild. Listing 8-19 shows the client code that calls the service.

Listing 8-19. Calling the Service with a Parcelable

package com.sayed;

import com.syh.IStockQuoteService;
import com.syh.Person;

import android.app.Activity;
import android.content.ComponentName;
import android.content.Context;
import android.content.Intent;
import android.content.ServiceConnection;
import android.os.Bundle;
import android.os.IBinder;
import android.os.RemoteException;
import android.util.Log;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.Toast;

public class MainActivity extends Activity {

 private IStockQuoteService stockService = null;
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 Button bindBtn = (Button)findViewById(R.id.bindBtn);
 bindBtn.setOnClickListener(new OnClickListener(){

 @Override
 public void onClick(View view) {
 bindService(new Intent(IStockQuoteService.class
 .getName()),
 serConn, Context.BIND_AUTO_CREATE);

 }});

 Button unbindBtn = (Button)findViewById(R.id.unbindBtn);
 unbindBtn.setOnClickListener(new OnClickListener(){

15967ch08.indd 297 6/5/09 11:16:41 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 8 ■ BUILDING aND CONSUMING SerVICeS298

 @Override
 public void onClick(View view) {
 unbindService(serConn);
 }});
 }

 private ServiceConnection serConn = new ServiceConnection() {

 @Override
 public void onServiceConnected(ComponentName name, IBinder service)
 {
 stockService = IStockQuoteService.Stub.asInterface(service);
 String val;
 try {
 Person person = new Person();
 person.setAge(33);
 person.setName("Sayed");
 val = stockService.getQuote("GOOG",person);
 Toast.makeText(MainActivity.this, "Value from service is: "+val+"",
Toast.LENGTH_SHORT).show();
 } catch (RemoteException ee) {
 Log.e("MainActivity", ee.getMessage(), ee);
 }

 }

 @Override
 public void onServiceDisconnected(ComponentName name) {

 }

 };
}

The interesting method in the client is the onServiceConnected() method. As shown, we
create a new Person object and set its Age and Name properties. We then execute the service and
display the result from the service call. The result looks like Figure 8-1.

Figure 8-1. Result from calling the service with a Parcelable

15967ch08.indd 298 6/5/09 11:16:41 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 8 ■ BUILDING aND CONSUMING SerVICeS 299

It is also useful to see the artifacts of the service project and the client that calls it (see
Figure 8-2).

Figure 8-2. The artifacts of the client and service

Figure 8-2 shows the Eclipse project artifacts for the service (left) and the client (right).
Note that the contract between the client and the service consists of the AIDL artifacts and
the Parcelable objects exchanged between the two parties. This is the reason that we see
IStockQuoteService.aidl, project.aidl, and Person.java on both sides. Because the AIDL
complier generates the Java interface, stub, proxy, and so on from the AIDL artifacts, the build
process creates the IStockQuoteService.java file on the client side when we copy the contract
artifacts to the client project.

Now we know how to exchange complex types between services and clients. Let’s briefly
touch on another important aspect of calling services: synchronous vs. asynchronous service
invocation.

All of the calls that you make on services are synchronous. This brings up the obvious
question, do you need to implement all of your service calls in a worker thread? Not neces-
sarily. In most other platforms, it’s common for a client to use a service that is a complete
black box, so the client would have to take appropriate precautions when making service
calls. With Android, you will likely know what is in the service (generally because you wrote
the service yourself), so you can make an informed decision. If you know that the method
you are calling is doing a lot of heavy lifting, then you should consider using a secondary
thread to make the call. If you are sure that the method does not have any bottlenecks, then
you can safely make the call on the UI thread. If you conclude that it’s best to make the ser-
vice call within a worker thread, you can create the thread from the onServiceConnected()
method of ServiceConnection and then call the service. You can then communicate the
result to the UI thread.

15967ch08.indd 299 6/5/09 11:16:41 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 8 ■ BUILDING aND CONSUMING SerVICeS300

Summary
This chapter was all about services. We talked about consuming external HTTP services
using the Apache HttpClient and about writing background services. With regard to using
the HttpClient, we showed you how to do HTTP GET calls and HTTP POST calls. We also showed
you how to do multipart POSTs.

The second part of the chapter dealt with writing services in Android. Specifically, we
talked about writing local services and remote services. We said that local services are services
that are consumed by the components (such as activities) in the same process as the service.
Remote services are services whose clients are outside the process hosting the services.

In the next chapter, we are going to discuss multimedia and telephony support in Android.

15967ch08.indd 300 6/5/09 11:16:41 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

C h a p t e r 9

Using the Media Framework
and telephony apIs

Now we are going to explore two very interesting portions of the Android SDK: media and
telephony. In our media discussion in the first part of the chapter, we will show you how to
play audio and video. We will also talk about recording audio—we discuss recording video in
Chapter 12. In our telephony discussion in the second part of the chapter, we will show you
how to send and receive Short Message Service (SMS) messages. We will also touch on several
other interesting aspects of the telephony APIs in Android.

Let’s begin by talking about the media APIs.

Using the Media APIs
Android supports playing audio and video content under the android.media package. In this
section, we are going to explore the media APIs from this package.

At the heart of the android.media package is the android.media.MediaPlayer class. The
MediaPlayer class is responsible for playing both audio and video content. The content for this
class can come from these sources:

	 •	 Web: You can play content from the web via a URL.

	 •	 .apk file: You can play content that is packaged as part of your .apk file. You can pack-
age the media content as a resource or as an asset (within the assets folder).

	 •	 Secure Digital (SD) card: You can play content that resides on the device’s SD card.

To get started, we’ll show you how to build a simple application that plays an MP3 file
located on the web (see Figure 9-1). After that, we will talk about using the setDataSource()
method of the MediaPlayer class to play content from the .apk file or the SD card. We will con-
clude our media discussion by talking about some of the shortfalls of the media APIs.

Figure 9-1 shows the user interface for our first example. This application will demon-
strate some of the fundamental uses of the MediaPlayer class, such as starting, pausing, and
restarting the media file. Look at the layout for the application’s user interface.

301

15967ch09.indd 301 6/5/09 11:16:24 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 9 ■ USING the MeDIa FraMeWOrK aND teLephONY apIS 302

Figure 9-1. The user interface for the media application

The user interface consists of a LinearLayout with three buttons (see Listing 9-1): one to
start the player, one to pause the player, and one to restart the player. The code and layout file
for the application is shown in Listing 9-1.

Listing 9-1. The Layout and Code for the Media Application

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<Button android:id="@+id/startPlayerBtn"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Start Playing Audio"
 />

<Button android:id="@+id/restartPlayerBtn"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Restart Player"
 />

<Button android:id="@+id/pausePlayerBtn"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Pause Player"
 />
</LinearLayout>

15967ch09.indd 302 6/5/09 11:16:24 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 9 ■ USING the MeDIa FraMeWOrK aND teLephONY apIS 303

import android.app.Activity;
import android.media.MediaPlayer;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;

public class MainActivity extends Activity
{
 static final String AUDIO_PATH =
"http://sayedhashimi.com/downloads/android/play.mp3";

 private MediaPlayer mediaPlayer;
 private int playbackPosition=0;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 Button startPlayerBtn = (Button)findViewById(R.id.startPlayerBtn);
 Button pausePlayerBtn = (Button)findViewById(R.id.pausePlayerBtn);
 Button restartPlayerBtn = (Button)findViewById(R.id.restartPlayerBtn);

 startPlayerBtn.setOnClickListener(new OnClickListener(){

 @Override
 public void onClick(View view)
 {
 try {
 playAudio(AUDIO_PATH);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }});

 pausePlayerBtn.setOnClickListener(new OnClickListener(){

 @Override
 public void onClick(View view)
 {
 if(mediaPlayer!=null)
 {
 playbackPosition = mediaPlayer.getCurrentPosition();
 mediaPlayer.pause();
 }
 }});

15967ch09.indd 303 6/5/09 11:16:24 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 9 ■ USING the MeDIa FraMeWOrK aND teLephONY apIS 304

 restartPlayerBtn.setOnClickListener(new OnClickListener(){

 @Override
 public void onClick(View view)
 {
 if(mediaPlayer!=null && !mediaPlayer.isPlaying())
 {
 mediaPlayer.start();
 mediaPlayer.seekTo(playbackPosition);
 }
 }});
 }

 private void playAudio(String url)throws Exception
 {
 killMediaPlayer();

 mediaPlayer = new MediaPlayer();
 mediaPlayer.setDataSource(url);
 mediaPlayer.prepare();
 mediaPlayer.start();
 }

 @Override
 protected void onDestroy()
 {
 super.onDestroy();

 killMediaPlayer();
 }
 private void killMediaPlayer()
 {
 if(mediaPlayer!=null)
 {
 try
 {
 mediaPlayer.release();
 }
 catch(Exception e)
 {
 e.printStackTrace();
 }
 }
 }
}

15967ch09.indd 304 6/5/09 11:16:24 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 9 ■ USING the MeDIa FraMeWOrK aND teLephONY apIS 305

The code in Listing 9-1 shows that the MainActivity class contains three members: a final
string that points to the URL of the MP3 file, a MediaPlayer instance, and an integer member
called playbackPosition. You can see from the onCreate() method that the code wires up the
click listeners for the three buttons. In the button-click handler for the Start Playing Audio
button, the playAudio() method is called. In the playAudio() method, a new instance of the
MediaPlayer is created and the data source of the player is set to the URL of the MP3 file. The
prepare() method of the player is then called to prepare the media player for playback, and
then the start() method is called to start playback.

Now look at the button-click handlers for the Pause Player and Restart Player buttons.
You can see that when the Pause Player button is selected, you get the current position of the
player by calling getCurrentPosition(). You then pause the player by calling pause(). When
the player has to be restarted, you call start() and then call seekTo(), passing in the position
obtained from getCurrentPosition(). Realize that in this scenario you are playing an MP3 file
from a web address. Therefore, you will need to add android.permission.INTERNET to your
manifest file.

The MediaPlayer class also contains a stop() method. Note that if you stop the player by
calling stop(), you need to call prepare() before calling start() again. Conversely, if you call
pause(), you can call start() again without having to prepare the player. Also, be sure to call
the release() method of the media player once you are done using it. In this example, you do
this as part of the killMediaPlayer() method.

The example in Listing 9-1 shows you how to play an audio file located on the web. The
MediaPlayer class also supports playing media local to your .apk file. Listing 9-2 shows how to
reference and play back a file from the /res folder of your .apk file.

Listing 9-2. Using the MediaPlayer to Play Back a File Local to Your Application

 private void playLocalAudio()throws Exception
 {
 mediaPlayer = MediaPlayer.create(this, R.raw.music_file);
 mediaPlayer.start();
 }

If you need to include an audio or video file with your application, you should place the
file in the /res/raw folder. You can then get a MediaPlayer instance for the resource by passing
in the resource ID of the media file; you do this by calling the static create() method, as shown
in Listing 9-2. Note that the MediaPlayer class also provides static create() methods that you
can use to get a MediaPlayer rather than instantiating one yourself. For example, in Listing 9-2
you call the create() method, but you could instead call the constructor MediaPlayer(Context
context,int resourceId). Using the static create() methods is preferable because they hide
the creation of the MediaPlayer. However, as you will see shortly, at times you will not have
a choice between these two options—you will have to instantiate the default constructor
because media content cannot be located via a resource ID or a URL.

Understanding the setDataSource Method
In Listing 9-2, we called the create() method to load the audio file from a raw resource. With
this approach, you don’t need to call setDataSource(). Alternatively, if you instantiate the
MediaPlayer yourself using the default constructor, or if your media content is not accessible
through a resource ID or a URL, you’ll need to call setDataSource().

15967ch09.indd 305 6/5/09 11:16:24 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 9 ■ USING the MeDIa FraMeWOrK aND teLephONY apIS 306

The setDataSource() method has overloaded versions that you can use to customize the
data source for your specific needs. For example, Listing 9-3 shows how you can load an audio
file from a raw resource using a FileDescriptor.

Listing 9-3. Setting the MediaPlayer’s Data Source Using a FileDescriptor

private void playLocalAudio_UsingDescriptor() throws Exception {

 AssetFileDescriptor fileDesc = getResources().openRawResourceFd(
 R.raw.music_file);
 if (fileDesc != null) {

 mediaPlayer = new MediaPlayer();
 mediaPlayer.setDataSource(fileDesc.getFileDescriptor(), fileDesc
 .getStartOffset(), fileDesc.getLength());

 fileDesc.close();

 mediaPlayer.prepare();
 mediaPlayer.start();
 }
}

The code in Listing 9-3 assumes that it’s within the context of an activity. As shown,
you call the getResources() method to get the application’s resources and then use the
openRawResourceFd() method to get a file descriptor for an audio file within the /res/raw
folder. You then call the setDataSource() method using the AssetFileDescriptor, the
starting position to begin playback, and the ending position. You can also use this version
of setDataSource() if you want to play back a specific portion of an audio file. If you always
want to play the entire file, you can call the simpler version of setDataSource(FileDescriptor
desc), which does not require the initial offset and length.

Using one of the setDataSource() methods with the FileDescriptor can also be handy if
you want to feed a media file located within your application’s /data directory. For security
reasons, the media player does not have access to an application’s /data directory, but your
application can open the file and then feed the (opened) FileDescriptor to setDataSource().
Realize that the application’s /data directory resides in the set of files and folders under
/data/data/APP_PACKAGE_NAME/. You can get access to this directory by calling the appropriate
method from the Context class, rather than hard-coding the path. For example, you can call
getFilesDir() on Context to get the current application’s files directory. Currently, this path
looks like the following: /data/data/APP_PACKAGE_NAME/files. Similarly, you can call
getCacheDir() to get the application’s cache directory. Your application will have read and
write permission on the contents of these folders, so you can create files dynamically and
feed them to the player.

Observe that an application’s /data directory differs greatly from its /res/raw folder. The
/raw folder is physically part of the .apk file, and it’s static—that is, you cannot modify the .apk
file dynamically. The contents of the /data directory, on the other hand, are dynamic.

Finally, if you use FileDescriptor, as shown in Listing 9-3, be sure to close the handle
after calling setDataSource().

15967ch09.indd 306 6/5/09 11:16:24 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 9 ■ USING the MeDIa FraMeWOrK aND teLephONY apIS 307

This concludes our discussion about playing audio content, so we’ll now turn our atten-
tion to playing video. As you’ll see, referencing video content is similar to referencing audio
content. But we have not yet talked about playing content from the device’s SD card, so we’ll
delve into that along the way.

Playing Video Content
In this section, we are going to discuss video playback using the Android SDK. Specifically, we
will discuss playing a video from a web server and playing one from an SD card. As you can
imagine, video playback is a bit more involved than audio playback. Fortunately, the Android
SDK provides some additional abstractions that address most of the heavy lifting.

Let’s get started by playing video content from a web server.

Video playback from a Web Server
As we said, playing video requires more effort than playing audio. To take some of the pain
away, Android provides a specialized view control called android.widget.VideoView that
encapsulates creating and initializing the MediaPlayer. To play video, you create a VideoView
widget and set that as the content of the UI. You then set the path or URI of the video and fire
the start() method. Listing 9-4 demonstrates video playback in Android.

Listing 9-4. Playing a Video Using the Media APIs

<?xml version="1.0" encoding="utf-8"?>
<AbsoluteLayout
 android:layout_width="fill_parent" android:layout_height="fill_parent"
 xmlns:android="http://schemas.android.com/apk/res/android">
 <VideoView
 android:id="@+id/videoView"
 android:layout_width="200px"
 android:layout_height="200px"
 android:layout_x="10px"
 android:layout_y="10px" />

</AbsoluteLayout>
@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 this.setContentView(R.layout.video);

 videoView = (VideoView)this.findViewById(R.id.videoView);
 MediaController mc = new MediaController(this);
 videoView.setMediaController(mc);
 videoView.setVideoURI(Uri.parse(
"http://sayedhashimi.com/downloads/android/movie.mp4"));
 //videoView.setVideoURI(Uri.parse("file:///sdcard/movie.mp4"));
 videoView.requestFocus();
 }

15967ch09.indd 307 6/5/09 11:16:24 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 9 ■ USING the MeDIa FraMeWOrK aND teLephONY apIS 308

The example in Listing 9-4 demonstrates video playback of a file located on the web
at http://sayedhashimi.com/downloads/android/movie.mp4, which means the application
running the code will need to request the android.permission.INTERNET permission. All of
the playback functionality is hidden behind the VideoView class. In fact, all you have to do is
feed the video content to the video player. The user interface of the application is shown in
Figure 9-2.

Figure 9-2. The video-playback UI with media controls enabled

As shown in Figure 9-2 and Listing 9-4, you can enable the VideoView with a media con-
troller. You can set the VideoView’s media controller by calling setMediaController() to enable
the play, pause, and seek-to controls. If you want to manipulate the video programmatically,
you can call the start(), pause(), stopPlayback(), and seekTo() methods.

As we mentioned, the example in Listing 9-4 plays a video file from a web server. You can
also play local files. For example, a common use case requires video playback of a file located
on the SD card. We’ll discuss this use case next.

Video playback from the SD Card
Playing back video from the SD card requires little code, but it does require some prep work
with regard to creating and configuring the emulator with the SD card. By default, the Android
1.1 emulator is not enabled with an SD card, so you first need to create an SD-card image and
configure the emulator to use the SD card. After the card is created and the emulator is made
aware of it, you can then use the Android tools within Eclipse to push the video file (or any
other file) to the SD card. After the file has been loaded onto the card, you can run the video
sample to play the video file at /sdcard/movie.mp4, for example. To configure an SD card for
the Android 1.5 emulator, see Chapter 12.

15967ch09.indd 308 6/5/09 11:16:24 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 9 ■ USING the MeDIa FraMeWOrK aND teLephONY apIS 309

Now let’s create the SD-card image. The Android tools bundle contains a utility called
mksdcard that can create an SD-card image. Actually, the utility creates a formatted file that
is used as an SD card. To use this utility, first create a folder for the image file at c:\Android\
sdcard\, for example. Then open a command line to the Android SDK /tools directory and run
the following command:

mksdcard 256M c:\Android\sdcard\sdcard.img

The command creates an SD-card image at c:\Android\sdcard\ with a file name of
sdcard.img. The size of the SD card will be 256MB. After you create the SD-card image, you
need to point the emulator to the image. You do this by passing a command-line argument to
the emulator, as shown in Figure 9-3.

Figure 9-3. Passing command-line arguments to the emulator

In Eclipse, open the release/debug configuration that you want to run (select Run ➤ Run
Configurations…). Select the “Android Application” node from the left pane and choose a
project to show its release/debug configuration in the right pane. Select the Target tab and set
the “Additional Emulator Command Line Options” field to

-sdcard c:\Android\sdcard\sdcard.img

15967ch09.indd 309 6/5/09 11:16:24 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 9 ■ USING the MeDIa FraMeWOrK aND teLephONY apIS 310

Note that the value of the -sdcard argument is the physical path to the SD-card image on
your workstation. Before you can run the video sample from the SD card, you need to upload a
video file to the SD card. You can do that by using the File Explorer tool. Start the emulator after
you set the -sdcard command-line option and wait until the emulator initializes. Then open
Eclipse in Debug perspective. You should see the File Explorer view as shown in Figure 9-4.

Figure 9-4. The File Explorer view

If the File Explorer is not shown, you can bring it up by going to Window ➤ Show View ➤
Other ➤ Android. Alternatively, you can show the Dalvik Debug Monitor Service (DDMS) per-
spective by going to Window ➤ Open Perspective ➤ Other ➤ DDMS, which will show all of the
views shown in Figure 9-5.

Figure 9-5. Enabling Android views

To push a file onto the SD card, select the sdcard folder in the File Explorer and choose the
button with the right-facing arrow (at the top-right corner). This launches a dialog box that lets
you select a file. Select the movie file that you want to upload to the SD card. In our example,
we assume that the file is located at the root of the SD card and that it’s named movie.mp4 (see
Listing 9-3). After the file is uploaded, you should be able to run the video sample in Listing 9-3
using the SD-card video file. The only change you’ll need to make to Listing 9-3 is to update
the setVideoURI() method with a file URL rather than an HTTP URL:

15967ch09.indd 310 6/5/09 11:16:25 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 9 ■ USING the MeDIa FraMeWOrK aND teLephONY apIS 311

videoView.setVideoURI(Uri.parse("file:///sdcard/movie.mp4"));

Realize that if the File Explorer displays an empty view, you either don’t have the emulator
running or the project that you are running in the emulator is not selected under the Devices
tab shown in Figure 9-4.

Finally, note that there are two ways to feed video content to VideoView: setVideoPath() or
setVideoURI(). setVideoPath() takes a physical path, whereas setVideoURI() accepts a URL.

Understanding the MediaPlayer Oddities
In general, the MediaPlayer is very systematic, so you need to call operations in a specific order
to initialize a media player properly and prepare it for playback. This list summarizes some of
the oddities of using the media APIs:

	 •	 Once	you	set	the	data	source	of	a	MediaPlayer, you cannot dynamically change it to
another one—you’ll have to create a new MediaPlayer or call the reset() method to
reinitialize the state of the player.

	 •	 After	you	call	prepare(), you can call getCurrentPosition(), getDuration(), and
isPlaying() to get the current state of the player. You can also call the setLooping()
and setVolume() methods after the call to prepare().

	 •	 After	you	call	start(), you can call pause(), stop(), and seekTo().

	 •	 Every	MediaPlayer creates a new thread, so be sure to call the release() method when
you are done with the media player. The VideoView takes care of this in the case of
video playback, but you’ll have to do it manually if you decide to use MediaPlayer
instead of VideoView.

Now let’s explore recording media.

Exploring Audio Recording
The Android media framework supports recording audio and video. You record media using
the android.media.MediaRecorder class. In this section, we’ll show you how to build an
application that records audio content and then plays the content back. (We discuss video
recording in Chapter 12.) The user interface of the application is shown in Figure 9-6.

Figure 9-6. The user interface of the audio-recorder example

15967ch09.indd 311 6/5/09 11:16:25 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 9 ■ USING the MeDIa FraMeWOrK aND teLephONY apIS 312

As shown in Figure 9-6, the application contains four buttons: two to control recording,
and two to start and stop playback of the recorded content. Listing 9-5 shows the layout file
and activity class for the UI.

Listing 9-5. Media Recording and Playback in Android

// record.xml
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <Button android:id="@+id/bgnBtn" android:layout_width="fill_parent"
 android:layout_height="wrap_content" android:text="Begin Recording"/>

 <Button android:id="@+id/stpBtn" android:layout_width="fill_parent"
 android:layout_height="wrap_content" android:text="Stop Recording"/>

 <Button android:id=
"@+id/playRecordingBtn" android:layout_width="fill_parent"
 android:layout_height="wrap_content" android:text="Play Recording"/>

 <Button android:id=
"@+id/stpPlayingRecordingBtn" android:layout_width="fill_parent"
 android:layout_height="wrap_content" android:text="Stop Playing Recording"/>

 </LinearLayout>
// RecorderActivity.java
import android.app.Activity;
import android.media.MediaPlayer;
import android.media.MediaRecorder;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
public class RecorderActivity extends Activity {
 private MediaPlayer mediaPlayer;
 private MediaRecorder recorder;
 private static final String OUTPUT_FILE= "/sdcard/recordoutput.3gpp";

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.record);

15967ch09.indd 312 6/5/09 11:16:25 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 9 ■ USING the MeDIa FraMeWOrK aND teLephONY apIS 313

 Button startBtn = (Button) findViewById(R.id.bgnBtn);

 Button endBtn = (Button) findViewById(R.id.stpBtn);

 Button playRecordingBtn = (Button) findViewById(R.id.playRecordingBtn);

 Button stpPlayingRecordingBtn =
(Button) findViewById(R.id.stpPlayingRecordingBtn);

 startBtn.setOnClickListener(new OnClickListener() {

 @Override
 public void onClick(View view) {
 try {
 beginRecording();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 });

 endBtn.setOnClickListener(new OnClickListener() {

 @Override
 public void onClick(View view) {
 try {
 stopRecording();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 });

 playRecordingBtn.setOnClickListener(new OnClickListener() {

 @Override
 public void onClick(View view) {
 try {
 playRecording();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 });

 stpPlayingRecordingBtn.setOnClickListener(new OnClickListener() {

15967ch09.indd 313 6/5/09 11:16:25 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 9 ■ USING the MeDIa FraMeWOrK aND teLephONY apIS 314

 @Override
 public void onClick(View view) {
 try {
 stopPlayingRecording();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 });
 }

 private void beginRecording() throws Exception {
 killMediaRecorder();

 File outFile = new File(OUTPUT_FILE);

 if(outFile.exists())
 {
 outFile.delete();
 }
 recorder = new MediaRecorder();
 recorder.setAudioSource(MediaRecorder.AudioSource.MIC);
 recorder.setOutputFormat(MediaRecorder.OutputFormat.THREE_GPP);
 recorder.setAudioEncoder(MediaRecorder.AudioEncoder.AMR_NB);
 recorder.setOutputFile(OUTPUT_FILE);
 recorder.prepare();
 recorder.start();

 }

 private void stopRecording() throws Exception {
 if (recorder != null) {
 recorder.stop();
 }
 }

 private void killMediaRecorder() {
 if (recorder != null) {
 recorder.release();
 }
 }

15967ch09.indd 314 6/5/09 11:16:25 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 9 ■ USING the MeDIa FraMeWOrK aND teLephONY apIS 315

 private void killMediaPlayer() {
 if (mediaPlayer != null) {
 try {
 mediaPlayer.release();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }

 private void playRecording() throws Exception {
 killMediaPlayer();

 mediaPlayer = new MediaPlayer();
 mediaPlayer.setDataSource(OUTPUT_FILE);

 mediaPlayer.prepare();
 mediaPlayer.start();
 }
 private void stopPlayingRecording() throws Exception {
 if(mediaPlayer!=null)
 {
 mediaPlayer.stop();
 }
 }

 @Override
 protected void onDestroy() {
 super.onDestroy();

 killMediaRecorder();
 killMediaPlayer();
 }

}

Before we jump into to Listing 9-5, realize that in order to record audio, you’ll need to add
the following permission to your manifest file:

<uses-permission android:name="android.permission.RECORD_AUDIO" />

If you look at the onCreate() method in Listing 9-5, you see that the on-click event han-
dlers are wired up for the four buttons. The beginRecording() method handles recording. To
record audio, you must create an instance of MediaRecorder and set the audio source, output
format, audio encoder, and output file. At this point, the only supported audio source is the
microphone, and you must set the encoder to AMR_NB, which signifies the Adaptive Multi-Rate

15967ch09.indd 315 6/5/09 11:16:25 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 9 ■ USING the MeDIa FraMeWOrK aND teLephONY apIS 316

(AMR) narrowband audio codec. The only supported output format for audio is 3rd Genera-
tion Partnership Project (3GPP). The recorded audio is written to the SD card at /sdcard/
recordoutput.3gpp. Note that Listing 9-5 assumes that you’ve created an SD-card image and
that you’ve pointed the emulator to the SD card. If you have not done this, refer to the section
“Video Playback from the SD Card” for details on setting this up.

Note that the current media APIs do not support streaming. For example, if you record
audio, you cannot access the audio stream during the recording process (for analysis pur-
poses, for example). Instead, you have to write the audio content to a file first and then work
with it. Future releases of the Android SDK will likely support audio streaming. Finally, as we
mentioned earlier, version 1.0 of the Android SDK does not support video recording. This fea-
ture will also probably be supported in a later release.

This concludes our discussion of the media APIs. We’re sure you’ll agree that playing
media content is quite simple with Android. The MediaPlayer class and VideoView control
wrap things up nicely. Recording audio is also simple. For more on the media framework,
see Chapter 12.

Now we’ll move on to the telephony APIs.

Using the Telephony APIs
In this section, we are going to explore Android’s telephony APIs. Specifically, we will show
you how to send and receive SMS messages, after which we’ll explore making and receiving
phone calls. We’ll start with SMS.

Working with SMS
SMS stands for Short Message Service, as we mentioned earlier, but it’s commonly called text
messaging. The Android SDK supports sending and receiving text messages. We’ll start by dis-
cussing various ways to send SMS messages with the SDK.

Sending SMS Messages
To send a text message from your application, you will add the <uses-permission
android:name="android.permission.SEND_SMS" /> permission to your manifest file and then
use the android.telephony.gsm.SmsManager class (see Listing 9-6).

Listing 9-6. Sending SMS (Text) Messages

import android.app.Activity;
import android.os.Bundle;
import android.telephony.gsm.SmsManager;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.EditText;
import android.widget.Toast;
public class TelephonyDemo extends Activity

15967ch09.indd 316 6/5/09 11:16:25 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 9 ■ USING the MeDIa FraMeWOrK aND teLephONY apIS 317

{
 private static final String TAG = "TelephonyDemo";
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.sms);

 Button sendBtn = (Button)findViewById(R.id.sendSmsBtn);

 sendBtn.setOnClickListener(new OnClickListener(){

 @Override
 public void onClick(View view) {
 EditText addrTxt =
(EditText)TelephonyDemo.this.findViewById(R.id.addrEditText);

 EditText msgTxt =
(EditText)TelephonyDemo.this.findViewById(R.id.msgEditText);

 try {
 sendSmsMessage(
addrTxt.getText().toString(),msgTxt.getText().toString());
 Toast.makeText(TelephonyDemo.this, "SMS Sent",
Toast.LENGTH_LONG).show();
 } catch (Exception e) {
 Toast.makeText(TelephonyDemo.this, "Failed to send SMS",
Toast.LENGTH_LONG).show();
 }
 }});
 }

 @Override
 protected void onDestroy() {
 super.onDestroy();
 }

 private void sendSmsMessage(String address,String message)throws Exception
 {
 SmsManager smsMgr = SmsManager.getDefault();
 smsMgr.sendTextMessage(address, null, message, null, null);
 }
}

15967ch09.indd 317 6/5/09 11:16:25 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 9 ■ USING the MeDIa FraMeWOrK aND teLephONY apIS 318

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >

 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">

 <TextView android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:text="Destination Address:" />

 <EditText android:id="@+id/addrEditText" android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:text="9045551212" />

 </LinearLayout>

 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">

 <TextView android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:text="Text Message:" />

 <EditText android:id="@+id/msgEditText" android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:text="hello sms" />

 </LinearLayout>

<Button android:id="@+id/sendSmsBtn"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Send Text Message"
 />

</LinearLayout>

15967ch09.indd 318 6/5/09 11:16:25 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 9 ■ USING the MeDIa FraMeWOrK aND teLephONY apIS 319

The example in Listing 9-6 demonstrates sending SMS text messages using the Android
SDK. Looking at the layout snippet first, you can see that the user interface has two EditText
fields: one to capture the SMS recipient’s destination address (the phone number), and
another to hold the text message. The user interface also has a button to send the SMS mes-
sage, as shown in Figure 9-7.

Figure 9-7. The UI for the SMS example

The interesting part of the sample is the sendSmsMessage() method. The method uses the
SmsManager class’s sendTextMessage() method to send the SMS message. Here’s the signature
of SmsManager.sendTextMessage():

sendTextMessage(String destinationAddress, String smscAddress, String textMsg,
PendingIntent sentIntent, PendingIntent deliveryIntent);

In this example, you populate only the destination address and the text-message param-
eters. You can, however, customize the method so it doesn’t use the default SMS center (the
address of the server on the cellular network that will dispatch the SMS message). You can also
implement a customization in which pending intents are called when the message is sent and
a delivery notification has been received.

All in all, sending an SMS message is about as simple as it gets with Android. Realize that,
with the emulator, your SMS messages are not actually sent to their destinations. You can,
however, assume success if the sendTextMessage() method returns without an exception. As
shown in Listing 9-6, you use the Toast class to display a message in the UI to indicate whether
the SMS message was sent successfully.

Sending SMS messages is only half the story. Now we’ll show you how to monitor incom-
ing SMS messages.

Monitoring Incoming SMS Messages
The first step in monitoring incoming SMS messages is requesting permission to receive them.
Do this by adding the <uses-permission android:name="android.permission.RECEIVE_SMS" />
permission to your manifest file. Next, you’ll need to implement a monitor to listen for SMS
messages. You accomplish this by implementing a BroadcastReceiver for the action <action
android:value="android.provider.Telephony.SMS_RECEIVED" />. To implement the receiver,
write a class that extends android.content.BroadcastReceiver and then register the receiver in
your manifest file. Listing 9-7 demonstrates this.

15967ch09.indd 319 6/5/09 11:16:25 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 9 ■ USING the MeDIa FraMeWOrK aND teLephONY apIS 320

Listing 9-7. Monitoring SMS Messages

<receiver android:name="MySMSMonitor">
 <intent-filter>
 <action android:name="android.provider.Telephony.SMS_RECEIVED"/>

 </intent-filter>
</receiver>

public class MySMSMonitor extends BroadcastReceiver
{
 private static final String ACTION = "android.provider.Telephony.SMS_RECEIVED";
 @Override
 public void onReceive(Context context, Intent intent)
 {
 if(intent!=null && intent.getAction()!=null &&
ACTION.compareToIgnoreCase(intent.getAction())==0)
 {
 Object[]pduArray= (Object[]) intent.getExtras().get("pdus");
 SmsMessage[] messages = new SmsMessage[pduArray.length];
 for (int i = 0; i<pduArray.length; i++) {
 messages[i] = SmsMessage.createFromPdu ((byte[])pduArray [i]);
 }
 Log.d("MySMSMonitor","SMS Message Received.");
 }
 }
}

The top portion of Listing 9-7 is the manifest definition for the BroadcastReceiver to inter-
cept SMS messages. The SMS monitor class is MySMSMonitor. The class implements the abstract
onReceive() method, which is called by the system when an SMS message arrives. One way to
test the application is to use the Emulator Control view in Eclipse. Run the application in the
emulator and then go to Window ➤ Show View ➤ Other ➤ Android ➤ Emulator Control. The
user interface allows you to send data to the emulator to emulate receiving an SMS message or
phone call. As shown in Figure 9-8, you can send an SMS message to the emulator by populat-
ing the “Incoming number” field and then selecting the SMS radio button. Then type some
text in the “Message” field and click the Send button. Doing this sends an SMS message to the
emulator and invokes your BroadcastReceiver’s onReceive() method.

The onReceive() method will have the broadcast intent, which will contain the SmsMessage
in the bundle property. You can extract the SmsMessage by calling intent.getExtras().
get("pdus"). This call returns an array of objects defined in Protocol Description Unit (PDU)
mode—an industry-standard way of representing an SMS message. You can then convert the
PDUs to Android SmsMessage objects, as shown in Listing 9-7. As you can see, you get the PDUs
as an object array from the intent. You then construct an array of SmsMessage objects, equal
to the size of the PDU array. Finally, you iterate over the PDU array, and create SmsMessage
objects from the PDUs by calling SmsMessage.createFromPdu().

15967ch09.indd 320 6/5/09 11:16:25 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 9 ■ USING the MeDIa FraMeWOrK aND teLephONY apIS 321

Figure 9-8. Using the Emulator Control UI to send SMS messages to the emulator

Now let’s continue our discussion about SMS by looking at how you can work with various
SMS folders.

Working with SMS Folders
Accessing the SMS inbox is another common requirement. To get started, you need to add
read-SMS permission (<uses-permission android:name="android.permission.READ_SMS"/>) to
the manifest file. Adding this permission gives you the ability to read from the SMS inbox.

To read SMS messages, you need to execute a query on the SMS inbox, as shown in
Listing 9-8.

Listing 9-8. Displaying the Messages from the SMS Inbox

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <TextView android:id="@+id/row"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"/>

</LinearLayout>
public class SMSInboxDemo extends ListActivity {

 private ListAdapter adapter;
 private static final Uri SMS_INBOX = Uri.parse("content://sms/inbox");

15967ch09.indd 321 6/5/09 11:16:25 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 9 ■ USING the MeDIa FraMeWOrK aND teLephONY apIS 322

 @Override
 public void onCreate(Bundle bundle) {
 super.onCreate(bundle);
 Cursor c = getContentResolver()
 .query(SMS_INBOX, null, null, null, null);
 startManagingCursor(c);
 String[] columns = new String[] { "body" };
 int[] names = new int[] { R.id.row };
 adapter = new SimpleCursorAdapter(this, R.layout.sms_inbox, c, columns,
 names);

 setListAdapter(adapter);
 }
}

Listing 9-8 opens the SMS inbox and creates a list in which each item contains the body
portion of an SMS message. The layout portion of Listing 9-8 contains a simple TextView that
will hold the body of each message in a list item. To get the list of SMS messages, you create a
URI pointing to the SMS inbox (content://sms/inbox) and then execute a simple query. You
then filter on the body of the SMS message and set the list adapter of the ListActivity. After
executing the code from Listing 9-8, you’ll see a list of SMS messages in the inbox. Make sure
you generate a few SMS messages using the Emulator Control before running the code on the
emulator.

Because you can access the SMS inbox, you would expect to be able to access other
SMS-related folders such as the sent folder or the draft folder. The only difference between
accessing the inbox and accessing the other folders is the URI you specify. For example, you
can access the sent folder by executing a query against content://sms/sent. This list shows the
complete list of SMS folders and the URI for each folder:

	 •	 Inbox: content://sms/inbox

	 •	 Sent: content://sms/sent

	 •	 Draft: content://sms/draft

	 •	 Undelivered: content://sms/undelivered

	 •	 Failed: content://sms/failed

	 •	 All: content://sms/all

Sending e-mail
Now that you’ve seen how to send SMS messages in Android, you might assume that you can
access similar APIs to send e-mail. Unfortunately, Android does not provide APIs for you to
send e-mail. The general consensus is that users don’t want an application to start sending
e-mail on their behalf. Instead, to send e-mail, you have to go through the registered e-mail
application. For example, you could use ACTION_SEND to launch the e-mail application:

15967ch09.indd 322 6/5/09 11:16:25 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 9 ■ USING the MeDIa FraMeWOrK aND teLephONY apIS 323

Intent emailIntent=new Intent(Intent.ACTION_SEND);

String subject = "Hi!";
String body = "hello from android....";

String extra = new String[]{"aaa@bbb.com"};
emailIntent.putExtra(Intent.EXTRA_EMAIL, extra);

emailIntent.putExtra(Intent.EXTRA_SUBJECT, subject);
emailIntent.putExtra(Intent.EXTRA_TEXT, body);
emailIntent.setType("message/rfc822");

startActivity(emailIntent);

This code launches the default e-mail application and allows the user to decide whether
to send the e-mail or not.

Now let’s talk about the telephony manager.

Working with the Telephony Manager
The telephony APIs also include the telephony manager (android.telephony.TelephonyManager),
which you can use to obtain information about the telephony services on the device, get sub-
scriber information, and register for telephony state changes. A common telephony use case
requires that an application execute business logic upon incoming phone calls. So in this sec-
tion, we are going to show you how to register for telephony state changes and how to detect
incoming phone calls. Listing 9-9 shows the details.

Listing 9-9. Using the Telephony Manager

public class TelephonyServiceDemo extends Activity
{
 private static final String TAG="TelephonyServiceDemo";
 @Override
 protected void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);

 TelephonyManager teleMgr =
(TelephonyManager)getSystemService(Context.TELEPHONY_SERVICE);
 teleMgr.listen(new MyPhoneStateListener(),
PhoneStateListener.LISTEN_CALL_STATE);
 }

 class MyPhoneStateListener extends PhoneStateListener
 {

15967ch09.indd 323 6/5/09 11:16:25 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 9 ■ USING the MeDIa FraMeWOrK aND teLephONY apIS 324

 @Override
 public void onCallStateChanged(int state, String incomingNumber) {
 super.onCallStateChanged(state, incomingNumber);

 switch(state)
 {

 case TelephonyManager.CALL_STATE_IDLE:
 Log.d(TAG, "call state idle...incoming number is["+
incomingNumber+"]");break;
 case TelephonyManager.CALL_STATE_RINGING:
 Log.d(TAG, "call state ringing...incoming number is["+
incomingNumber+"]");break;
 case TelephonyManager.CALL_STATE_OFFHOOK:
 Log.d(TAG, "call state Offhook...incoming number is["+
incomingNumber+"]");break;
 default:
 Log.d(TAG, "call state ["+state+"]incoming number is["+
incomingNumber+"]");break;
 }
 }

 }
}

When working with the telephony manager, be sure to add the <uses-permission
android:name="android.permission.READ_PHONE_STATE" /> permission to your manifest file
so you can access phone-state information. As shown in Listing 9-9, you get notified about
phone-state changes by implementing a PhoneStateListener and calling the listen() method
of the TelephonyManager. When a phone call arrives, or the phone state changes, the system
will call your PhoneStateListener’s onCallStateChanged() method with the new state and the
incoming phone number. In the case of an incoming call, you look for the CALL_STATE_RINGING
state. You write a debug message to the log file in this example, but your application could
implement custom business logic in its place. To emulate incoming phone calls, you can use
Eclipse’s Emulator Control UI, as you did with SMS messages (see Figure 9-8).

When dealing with phone-state changes, you might also need to get the subscriber’s
(user’s) phone number. TelephonyManager.getLine1Number() will return that for you.

Summary
In this chapter, we talked about the Android media framework and the telephony APIs. With
respect to media, we showed you how to play audio and video. We also showed you how to
record audio. Refer to Chapter 12 for more discussion of media—video capture, intents to
record audio/video, and more.

In the second part of the chapter, we talked about telephony services in Android. Specifi-
cally, we showed you how to send text messages and how to monitor incoming text messages.
We also showed you how to access the various SMS folders on the device. We concluded with a
discussion of the TelephonyManager class.

In the next chapter, we are going to turn our attention to 3D graphics by discussing how to
use OpenGL with your Android applications.

15967ch09.indd 324 6/5/09 11:16:25 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

C h a p t e r 1 0

programming 3D Graphics
with OpenGL

In this chapter, we will talk about working with the OpenGL graphics API on the Android
Platform. Specifically, we’ll break down the topic into three sections. First, we’ll provide an
overview of OpenGL, OpenGL for Embedded Systems (OpenGL ES), and some competing
standards. Second, we will explain the theory behind OpenGL and cover some of the essential
OpenGL ES APIs. In the third and final section, we will give you the necessary code to build a
test harness that you can use to exercise the APIs covered in the second section.

OpenGL ES is a 2D and 3D graphics API specifically for embedded systems, and Android
supports it completely. The Android SDK distribution comes with a number of OpenGL ES
samples to attest to this fact. However, in versions 1.0, 1.1, and 1.5 of the Android SDK, docu-
mentation on how to get started with OpenGL is minimal to nonexistent. The underlying
assumption is that OpenGL ES is an open standard and that programmers can learn it from
sources outside Android. A side effect of this assumption is that the few online resources that
address using OpenGL with Android assume you’re already familiar with OpenGL.

Here’s the good news, though. In this chapter, we will help you with these minor road-
blocks. With a few prerequisites, we will walk you through the creation of an OpenGL ES test
harness that you can use to start drawing and experimenting with the OpenGL ES API. In
the process, we will draw attention to the necessary basics of OpenGL and point you toward
OpenGL resources online that will help you explore the matter further.

The way you construct this test harness, and hence the way you approach OpenGL, dif-
fers between releases 1.1 and 1.5. The approach in release 1.0 is the same as the approach in
release 1.1, because the latter is a fix release for the former. We know there might be program-
mers out there using all three releases, so we will show you the test-harness implementation
using 1.0 and 1.1 in this chapter. And we will reimplement this OpenGL test harness again in
Chapter 13 using the 1.5 SDK. Even if you are programming in the 1.5 SDK, you might want
to read this section to understand how the 1.5 SDK would have implemented the underlying
abstraction. So, this chapter is certainly a prerequisite for Chapter 13.

By the end of this chapter, you’ll be well-equipped with the ideas of drawing in three
dimensions, setting up the OpenGL camera, and setting up the viewing volume (also called the
frustum). We will do this by introducing almost no mathematics (unlike many OpenGL books).

325

15967ch10.indd 325 6/5/09 11:16:09 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 10 ■ prOGraMMING 3D GraphICS WIth OpeNGL 326

■Note The OpenGL camera concept is similar but distinct from the Camera class in Android’s graphics
package, which you learned about in Chapter 6. Whereas Android’s Camera object from the graphics pack-
age simulates 3D-like viewing capabilities by projecting a 2D view moving in 3D space, the OpenGL camera
is a paradigm that represents a virtual viewing point. In other words, it models a real-world scene through
the viewing perspective of an observer looking through a camera. You’ll learn more in the subsection “Under-
standing the Camera and Coordinates” under “Using OpenGL ES.” Both cameras are still separate from the
handheld device’s physical camera that you use to take pictures or shoot video.

Understanding OpenGL
OpenGL (originally called Open Graphics Library) is a 2D and 3D graphics API that was
developed by Silicon Graphics Inc. (SGI) for its Unix workstations. Although SGI’s version of
OpenGL has been around for a long time, the first standardized spec of OpenGL emerged in
1992. Now widely adopted on all operating systems, the OpenGL standard forms the basis of
much of the gaming, computer-aided design (CAD), and even virtual reality (VR) industries.

The OpenGL standard is currently being managed by an industry consortium called The
Khronos Group (http://www.khronos.org), founded in 2000 by companies such as NVIDIA,
Sun Microsystems, ATI Technologies, and SGI. You can learn more about the OpenGL spec at
the consortium’s web site:

http://www.khronos.org/opengl/

The official documentation page for OpenGL is available here:

http://www.opengl.org/documentation/

As you can see from this documentation page, you have access to many books and online
resources dedicated to OpenGL. Of these, the gold standard is OpenGL Programming Guide:
The Official Guide to Learning OpenGL, Version 1.1, also known as the “red book” of OpenGL.
You can find an online version of this book here:

http://www.glprogramming.com/red/

We recommend this book highly. Unlike many other OpenGL books, this book is emi-
nently readable. We did have some difficulty, however, unraveling the nature of units that
are used to draw. Perhaps the authors thought it was a simpler concept than it is. We’ll try to
clarify the important ideas regarding what you draw and what you see in OpenGL. These ideas
center on setting up the OpenGL camera and setting up a viewing box, also known as a viewing
volume or frustum.

While we are on the subject of OpenGL, we should talk a little bit about Direct3D, which
is part of Microsoft’s DirectX API. It’s likely that Direct3D will be the standard on Windows-
based mobile devices. Moreover, because OpenGL and Direct3D are similar, you could even
read books about Direct3D to get an understanding of how 3D drawing works.

This Direct3D standard, which emerged from Microsoft in 1996, is programmed using
COM (Component Object Model) interfaces. In the Windows world, you use COM interfaces
to communicate between different components of an application. When a component is

15967ch10.indd 326 6/5/09 11:16:09 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 10 ■ prOGraMMING 3D GraphICS WIth OpeNGL 327

developed and exposed through a COM interface, any development language on the Windows
platform can access it, both from inside and outside the application. In the Unix world, CORBA
(Common Object Request Broker Architecture) plays the role that COM plays for Windows.

OpenGL, on the other hand, uses language bindings that look similar to their C language
counterparts. A language binding allows a common library to be used from many different
languages such as C, C++, Visual Basic, Java, and so on.

Both the OpenGL and Direct3D standards are converging in their capabilities, but you
might face a different learning curve because OpenGL is a C API whereas Direct3D is a COM
interface. Plus, you’ll see differences in their rendering semantics, which are the approaches
used inside the library to paint (roughly) a graphic scene.

Let us now talk about OpenGL ES, the version of OpenGL geared toward the mobile platform.

OpenGL ES
The Khronos Group is also responsible for two additional standards that are tied to OpenGL:
OpenGL ES, and the EGL Native Platform Graphics Interface (known simply as “EGL”). As we
mentioned, OpenGL ES is a smaller version of OpenGL intended for embedded systems. While
we are on the subject of embedded systems, let us point out that the Java Community Process
is also developing an object-oriented abstraction for OpenGL for mobile devices called Mobile
3D Graphics API (M3G). We will briefly give you an introduction to M3G in the subsection
“M3G: Another Java ME 3D Graphics Standard.”

The EGL standard needs some explanation. It’s essentially an enabling interface between
the underlying operating system and the rendering APIs offered by OpenGL ES. Because
OpenGL and OpenGL ES are general-purpose interfaces for drawing, each operating system
needs to provide a standard hosting environment for OpenGL and OpenGL ES to interact with.
You will get to know this need in practical terms later in the chapter, when we use the EGL
APIs in our examples.

Let’s come back to OpenGL ES. The target devices for OpenGL ES include cell phones,
appliances, and even vehicles. Because OpenGL ES has to be much smaller than OpenGL,
many convenient functions have been removed. Drawing rectangles is not directly supported
in OpenGL ES, for example; you have to draw two triangles to make a rectangle.

As you start exploring Android’s support for OpenGL, you’ll focus primarily on OpenGL
ES and its bindings to the Android OS through Java and EGL. You can find the documentation
(man pages) for OpenGL ES here:

http://www.khronos.org/opengles/documentation/opengles1_0/html/index.html

We kept returning to this reference as we developed this chapter, because it identifies and
explains each OpenGL ES API and describes the arguments for each. You’ll find these APIs
similar to Java APIs, and you’ll get introduced to some of them in this chapter.

OpenGL ES and Java ME
OpenGL ES, like OpenGL, is a C-based, flat API. Because the Android SDK is a Java-based
programming API, you need a Java binding to OpenGL ES. Java ME has already defined this
binding through JSR 239: Java Binding for the OpenGL ES API. JSR 239 itself is based on JSR
231, which is a Java binding for OpenGL 1.5. JSR 239 could have been strictly a subset of JSR
231, but that’s not the case because it must accommodate some extensions to OpenGL ES that
are not in OpenGL 1.5.

15967ch10.indd 327 6/5/09 11:16:09 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 10 ■ prOGraMMING 3D GraphICS WIth OpeNGL 328

You can find the documentation for JSR 239 here:

http://java.sun.com/javame/reference/apis/jsr239/

This reference will give you a sense of the APIs available in OpenGL ES. It also provides
valuable information about these packages:

javax.microedition.khronos.egl
javax.microedition.khronos.opengles
java.nio

The nio package is necessary because the OpenGL ES implementations take only byte
streams as inputs for efficiency reasons. nio defines a lot of utility buffers for this purpose. You
will see some of these in action in the “glVertexPointer and Specifying Drawing Vertices”
subsection under the main “Using OpenGL ES” section.

You can find minimal documentation of the Android SDK’s support for OpenGL at this site:

http://developer.android.com/guide/topics/graphics/opengl.html

On this page, the documentation indicates that the Android implementation mostly
parallels JSR 239 but warns that it might diverge from it in a few places.

M3G: Another Java ME 3D Graphics Standard
JSR 239 is merely a Java binding on a native OpenGL ES standard. As we mentioned briefly in
the “OpenGL ES” subsection, Java provides another API to work with 3D graphics on mobile
devices: M3G. This object-oriented standard is defined in JSR 184 and JSR 297, the latter being
more recent. As per JSR 184, M3G serves as a lightweight, object-oriented, interactive 3D
graphics API for mobile devices.

The object-oriented nature of M3G separates it from OpenGL ES. For details, visit the
home page for JSR 184:

http://www.jcp.org/en/jsr/detail?id=184

The APIs for M3G are available in the Java package

javax.microedition.m3g.*;

M3G is a higher-level API compared to OpenGL ES, so it should be easier to learn. How-
ever, the jury is still out on how well it will perform on handhelds. As of now, Android does not
support M3G.

So far, we have laid out the options available in the OpenGL space for handheld devices.
We have talked about OpenGL ES and also briefly about the M3G standard. We will now focus
on working with OpenGL ES on Android.

Using OpenGL ES
This section is dedicated to helping you understand the concepts behind OpenGL and the
OpenGL ES API. We’ll explain all the key APIs, after which you’ll put them to use in the next
section when you develop a test harness for OpenGL ES. First we’ll discuss the basics of
OpenGL and then we’ll show you how Android interfaces with the OpenGL ES API.

15967ch10.indd 328 6/5/09 11:16:09 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 10 ■ prOGraMMING 3D GraphICS WIth OpeNGL 329

To supplement the information from this chapter, you might want to bookmark the online
resources we mentioned earlier. Here they are again:

	 •	 OpenGL Programming Guide (the “red book”): http://www.glprogramming.com/red/

	 •	 Documentation for JSR 239 (Java Binding for the OpenGL ES API): http://java.sun.
com/javame/reference/apis/jsr239/

	 •	 The Khronos Group’s OpenGL ES Reference Manual: http://www.khronos.org/opengles/
documentation/opengles1_0/html/index.html

■Note As you start using the OpenGL resources, you’ll notice that some of the APIs are not available in
OpenGL ES. This is where The Khronos Group’s OpenGL ES Reference Manual comes in handy.

We will cover the following APIs in a fair amount of detail because they’re central to
understanding OpenGL and OpenGL ES:

	 •	 glVertexPointer

	 •	 glDrawElements

	 •	 glColor

	 •	 glClear

	 •	 gluLookAt

	 •	 glFrustum

	 •	 glViewport

As we cover these APIs, you’ll learn how to

	 •	 Use	the	essential	OpenGL	ES	drawing	APIs

	 •	 Clear	the	palette

	 •	 Specify	colors

	 •	 Understand	the	camera	and	coordinates

	 •	 Interact	with	an	Android	view	to	draw	using	OpenGL	ES

Essential Drawing with OpenGL ES
In OpenGL, you draw in 3D space. You start out by specifying a series of points, also called
vertices. Each of these points will have three values: one for the x coordinate, one for the y
coordinate, and one for the z coordinate.

These points are then joined together to form a shape. You can join these points into a
variety of shapes called primitive shapes, which include points, lines, and triangles in OpenGL
ES. Note that in OpenGL, primitive shapes also include rectangles and polygons. As you work
with OpenGL and OpenGL ES, you will continue to see differences whereby the latter has

15967ch10.indd 329 6/5/09 11:16:09 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 10 ■ prOGraMMING 3D GraphICS WIth OpeNGL 330

fewer features than the former. Here’s another example: OpenGL allows you to specify each
point separately, whereas OpenGL ES allows you to specify them only as a series of points in
one fell swoop. However, you can often simulate OpenGL ES’s missing features through other,
more primitive features. For instance, you can draw a rectangle by combining two triangles.

OpenGL ES offers two primary methods to facilitate drawing:

	 •	 glVertexPointer

	 •	 glDrawElements

■Note We’ll use the terms “API” and “method” interchangeably when we talk about the OpenGL ES APIs.

You use glVertexPointer to specify a series of points or vertices, and you use glDrawElements
to draw them using one of the primitive shapes that we pointed out earlier. We’ll describe
these methods in more detail, but first let’s go over some nomenclature.

The names of these OpenGL and OpenGL ES APIs all begin with gl. Following gl is the
method name. The method name is followed by an optional number such as 3, which points to
either the number of dimensions—such as (x,y,z)—or the number of arguments. The method
name is then followed by a data type such as f for float. (You can refer to any of the OpenGL
online resources to learn the various data types and their corresponding letters.)

We’ll tell you about one more convention. If a method takes an argument either as a byte (b)
or a float (f), then the method will have two names: one ending with b, and one ending with f.

Let’s now look at each of the two drawing-related methods, starting with glVertexPointer.

glVertexpointer and Specifying Drawing Vertices
The glVertexPointer method is responsible for specifying an array of points to be drawn. Each
point is specified in three dimensions, so each point will have three values: x, y, and z. Here’s
how you can specify three points in an array:

float[] coords = {
 -0.5f, -0.5f, 0, //p1: (x1,y1,z1)
 0.5f, -0.5f, 0, //p2: (x1,y1,z1)
 0.0f, 0.5f, 0 //p3: (x1,y1,z1)
};

This structure is a contiguous array of floats kept in a Java-based float array. Don’t worry
about typing or compiling this code anywhere yet—our goal at this point is just to give you an
idea of how these OpenGL ES methods work. We will give you the working examples and code
when we help you develop a test harness in the last section of this chapter.

You might be wondering what units are used for the coordinates in points p1, p2, and p3.
The short answer is that as you model your 3D space, these coordinate units can be anything
you’d like. But subsequently, you will need to specify something called a bounding volume (or
bounding box) that quantifies these coordinates. For example, you can specify the bounding
box as a cube with 5-inch sides or a cube with 2-inch sides. These coordinates are also known
as world coordinates because you are conceptualizing your world independent of the physical

15967ch10.indd 330 6/5/09 11:16:09 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 10 ■ prOGraMMING 3D GraphICS WIth OpeNGL 331

device’s limitations. We will further explain these coordinates in the subsection “Understand-
ing the Camera and Coordinates.” For now, assume that you are using a cube that is 2 units
across all its sides and centered at (x=0,y=0,z=0).

■Note The terms bounding volume, bounding box, viewing volume, viewing box, and frustum all refer
to the same concept: the pyramid-shaped 3D volume that determines what is visible onscreen. You’ll
learn more in the “glFrustum and the Viewing Volume” subsection under “Understanding the Camera and
Coordinates.”

You can also assume that the origin is at the center of visual display. The z axis will be
negative going into the display (away from you) and positive coming out of the display (toward
you). x will go positive as you move right and negative as you move left. However, these coor-
dinates will also depend on the direction from which you are viewing the scene.

To draw these points, you need to pass them to OpenGL ES through the glVertexPointer
method. For efficiency reasons, however, glVertexPointer takes a native buffer that is lan-
guage-agnostic rather than an array of floats. For this, you need to convert the Java-based
array of floats to an acceptable C-like native buffer. You’ll need to use the java.nio classes to
convert the float array into the native buffer. Here’s the sample code to do that:

jva.nio.ByteBuffer vbb = java.nio.ByteBuffer.allocateDirect(3 * 3 * 4);
vbb.order(ByteOrder.nativeOrder());
java.nio.FloatBuffer mFVertexBuffer = vbb.asFloatBuffer();

The byte buffer is a buffer of memory ordered into bytes. Each point has three floats
because of the three axes, and each float is 4 bytes. So together you get 3 * 4 bytes for each
point. Plus, a triangle has three points. So you need 3 * 3 * 4 bytes to hold all three float
points of a triangle.

Once you have the points gathered into a native buffer, you can call glVertexPointer like
this:

glVertexPointer(
 // Are we using (x,y) or (x,y,z) in each point
 3,
 // each value is a float value in the buffer
 GL10.GL_FLOAT,
 // Between two points there is no space
 0,
 // pointer to the start of the buffer
 mFVertexBuffer);

Let’s talk about the arguments of this method. The first argument tells OpenGL ES how
many dimensions there are in a point or a vertex. In this case, we specified 3 for x, y, and z. You
could also specify 2 for just x and y. In that case, z would be zero. Note that this first argument
is not the number of points in the buffer, but the number of dimensions used. So if you pass 20
points to draw a number of triangles, you will not pass 20 as the first argument; you would pass
2 or 3, depending on the number of dimensions used.

15967ch10.indd 331 6/5/09 11:16:09 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 10 ■ prOGraMMING 3D GraphICS WIth OpeNGL 332

The second argument indicates that the coordinates need to be interpreted as floats. The
third argument, called a stride, points to the number of bytes separating each point. In this case,
it is zero because one point immediately follows the other. Sometimes you can add color attributes
as part of the buffer after each point. If you want to do that, you’d use a stride to skip those as part
of the vertex specification. The last argument is the pointer to the buffer containing the points.

Now you understand how to set up the array of points to be drawn. Next, you’ll see how
you’d actually draw this array of points using the glDrawElements method.

glDrawelements
Once you specify the series of points through glVertexPointer, you use the glDrawElements
method to draw those points with one of the primitive shapes that OpenGL ES allows. Note
that OpenGL is a state machine, meaning that it remembers the values set by one method
when it invokes the next method in a cumulative manner. So you don’t need to explicitly pass
the points set by glVertexPointer to glDrawElements. glDrawElements will implicitly use those
points. Listing 10-1 shows an example of this method with possible arguments.

Listing 10-1. Example of glDrawElements

glDrawElements(
 // type of shape
 GL10.GL_TRIANGLE_STRIP,
 // Number of indices
 3,
 // How big each index is
 GL10.GL_UNSIGNED_SHORT,
 // buffer containing the 3 indices
 mIndexBuffer);

The first argument indicates the type of geometrical shape to draw: GL_TRIANGLE_STRIP
signifies a triangle strip. Other possible options for this argument are points only (GL_POINTS),
line strips (GL_LINE_STRIP), lines only (GL_LINES), line loops (GL_LINE_LOOP), triangles only
(GL_TRIANGLES), and triangle fans (GL_TRIANGLE_FAN).

The concept of a STRIP in GL_LINE_STRIP and GL_TRIANGLE_STRIP is to add new points
while making use of the old ones. This way, you can avoid specifying all the points for each
new object. For example, if you specify four points in an array, you can use strips to draw the
first triangle out of (1,2,3) and the second one out of (2,3,4). Each new point will add a new
triangle. (You can refer to the OpenGL red book for more details.) You can also vary these
parameters to see how the triangles are drawn as you add new points.

The idea of a FAN in GL_TRIANGLE_FAN applies to triangles where the first point is used as a
starting point for all subsequent triangles. So you’re essentially making a FAN- or circle-like object
with the first vertex in the middle. Suppose you have six points in your array: (1,2,3,4,5,6). With
a FAN, the triangles will be drawn at (1,2,3), (1,3,4), (1,4,5), and (1,5,6). Every new point adds an
extra triangle, similar to the process of extending a fan or unfolding a pack of cards.

The rest of the arguments of glDrawElements involve the method’s ability to let you reuse
point specification. For example, a square contains four points. Each square can be drawn as a
combination of two triangles. If you want to draw two triangles to make up the square, do you
have to specify six points? No. You can specify only four points and refer to them six times to
draw two triangles. This process is called indexing into the point buffer.

15967ch10.indd 332 6/5/09 11:16:09 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 10 ■ prOGraMMING 3D GraphICS WIth OpeNGL 333

Here is an example:

Points: (p1, p2, p3, p4)
Draw indices (p1, p2, p3, p2,p3,p4)

Notice how the first triangle comprises p1,p2,p3 and the second one comprises p2,p3,p4.
With this knowledge, the second argument identifies how many indices there are in the index
buffer.

The third argument to glDrawElements (see Listing 10-1) points to the type of values in
the index array, whether they are unsigned shorts (GL_UNSIGNED_SHORT) or unsigned bytes
(GL_UNSIGNED_BYTE).

The last argument points to the index buffer. To fill up the index buffer, you need to do
something similar to what you did with the vertex buffer. Start with a Java array and use the
java.nio package to convert that array into a native buffer.

Here is some sample code that converts a short array of {0,1,2} into a native buffer suit-
able to be passed to glDrawElements:

//Figure out how you want to arrange your points
short[] myIndecesArray = {0,1,2};

//get a short buffer
java.nio.ShortBuffer mIndexBuffer;

//Allocate 2 bytes each for each index value
ByteBuffer ibb = ByteBuffer.allocateDirect(3 * 2);
ibb.order(ByteOrder.nativeOrder());
mIndexBuffer = ibb.asShortBuffer();

//stuff that into the buffer
for (int i=0;i<3;i++)
{
 mIndexBuffer.put(myIndecesArray[i]);
}

Now that you’ve seen mIndexBuffer at work in the preceding snippet, you can revisit
Listing 10-1 and better understand what’s going on.

■Note Rather than create any new points, the index buffer merely indexes into the array of points indicated
through the glVertexPointer. This is possible because OpenGL remembers the assets set by the previous
calls in a stateful fashion.

Now we’ll look at two commonly used OpenGL ES methods: glClear and glColor. We’ll
use each of these in our test harness.

15967ch10.indd 333 6/5/09 11:16:10 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 10 ■ prOGraMMING 3D GraphICS WIth OpeNGL 334

glClear
You use the glClear method to erase the drawing surface. Using this method, you can reset
not only the color, but also the depth and the type of stencils used. You specify which ele-
ment to reset by the constant that you pass in: GL_COLOR_BUFFER_BIT, GL_DEPTH_BUFFER_BIT, or
GL_STENCIL_BUFFER_BIT.

The color buffer is responsible for the pixels that are visible, so clearing it is equivalent to
erasing the surface of any colors. The depth buffer refers to all the pixels that are visible in a 3D
scene, depending on how far or close the object is.

The stencil buffer is a bit advanced to cover in this introductory chapter, except to say this:
you use it to create visual effects based on some dynamic criteria, and you use glClear to erase it.

■Note A stencil is a drawing template that you can use to replicate a drawing many times. For example,
if you are using Microsoft Office Visio, all the drawing templates that you save as *.vss files are stencils.
In the noncomputer drawing world, you create a stencil by cutting out a pattern in a sheet of paper or some
other flat material. Then you can paint over that sheet and remove it, creating the impression that results in a
replication of that drawing.

For our purposes, you can use this code to clear the color buffer in all the examples:

//Clear the surface of any color
gl.glClear(gl.GL_COLOR_BUFFER_BIT);

Now let’s talk about attaching a default color to what gets drawn.

glColor
You use glColor to set the default color for the subsequent drawing that takes place. In the fol-
lowing code segment, the method glColor4f sets the color to red:

//Set the current color
glColor4f(1.0f, 0, 0, 0.5f);

Recall the discussion about method nomenclature: 4f refers to the four arguments that
the method takes, each of which is a float. The four arguments are components of red, green,
blue, and alpha (color gradient). The starting values for each are (1,1,1,1). In this case, we have
set the color to red with half a gradient (specified by the last alpha argument).

Although we have covered the basic drawing APIs, we still need to address a few things
regarding the coordinates of the points that you specify in 3D space. The next subsection
explains how OpenGL models a real-world scene through the viewing perspective of an
observer looking through a camera.

Understanding the Camera and Coordinates
As you draw in 3D space, you ultimately must project the 3D view onto a 2D screen—similar to
capturing a 3D scene using a camera in the real world. This symbolism is formally recognized
in OpenGL, so many concepts in OpenGL are explained in terms of a camera.

15967ch10.indd 334 6/5/09 11:16:10 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 10 ■ prOGraMMING 3D GraphICS WIth OpeNGL 335

As you will see in this subsection, the part of your drawing that becomes visible depends
on the location of the camera, the direction of the camera lens, the orientation of the camera
(such as upside down), the zoom level, and the size of the capturing “film.”

These aspects of projecting a 3D picture onto a 2D screen are controlled by three methods
in OpenGL:

	 •	 gluLookAt: Controls the direction of the camera

	 •	 glFrustum: Controls the viewing volume or zoom

	 •	 glViewport: Controls the size of the screen or the size of the camera’s “film”

You won’t be able to program anything in OpenGL unless you understand the implica-
tions of these three APIs. Let us elaborate on the camera symbolism further to explain how
these three APIs affect what you see on an OpenGL screen. We will start with gluLookAt.

gluLookat and the Camera Symbolism
Imagine you go on a trip to take pictures of a landscape involving flowers, trees, streams, and
mountains. You get to the meadow. The scene that lies before you is equivalent to what you draw
in OpenGL. You can make these drawings big, like the mountains, or small, like the flowers—as
long as they are all proportional to one another. The coordinates you’ll use for these drawings, as
we hinted at earlier, are called world coordinates. Under these coordinates, you can establish a
line to be four units long on the x axis by setting your points as (0,0,0) to (4,0,0).

As you are getting ready to take a picture, you find a spot to place your tripod. Then you
hook up the camera to the tripod. The location of your camera—not the tripod, but the cam-
era itself—becomes the origin of your camera in the world. So you will need to take a piece of
paper and write down this location, which is called the eye point. If you don’t specify an eye
point, the camera is located at (0,0,0), which is the exact center of your screen. Usually you
want to step away from the origin so that you can see the (x,y) plane that is sitting at the origin
of z=0. For argument’s sake, suppose you position the camera at (0,0,5). This would move the
camera off your screen toward you by 5 units.

You can refer to Figure 10-1 to visualize how the camera is placed.
Once you place the camera, you start looking ahead or forward to see which portion of the

scene you want to capture. You will position the camera in the direction you are looking. This
far-off point that you are looking at is called a view point or a look-at point. This point specifi-
cation is really a specification of the direction. So if you specify your view point as (0,0,0), then
the camera is looking along the z axis toward the origin from a distance of five units, assuming
the camera is positioned at (0,0,5). You can see this in Figure 10-1, where the camera is looking
down the z axis.

Imagine further that there is a rectangular building at the origin. You want to look at it not
in a portrait fashion, but in a landscape fashion. What do you have to do? You obviously can
leave the camera in the same location and still point it toward the origin, but now you need to
turn the camera by 90 degrees. This is the orientation of the camera, as the camera is fixed at
a given eye point and looking at a specific look-at point or direction. This orientation is called
the up vector.

The up vector simply identifies the orientation of the camera such as up, down, left, right,
or at an angle. This orientation of the camera is specified using a point as well. Imagine a line
from the origin—not the camera origin, but the world-coordinate origin—to this point. What-
ever angle this line subtends in three dimensions at the origin is the orientation of camera.

15967ch10.indd 335 6/5/09 11:16:10 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 10 ■ prOGraMMING 3D GraphICS WIth OpeNGL 336

screen
window

C

(0,0,0) z axis

y axis

2 -2

camera position (5)

near (3)

far(7)

frustum
height

point it up

projection

Figure 10-1. OpenGL viewing concepts using the camera analogy

For example, an up vector for a camera might look like (0,1,0) or even (0,15,0), both of
which would have the same effect. The point (0,1,0) is a point away from the origin along the y
axis going up. This means you position the camera upright. If you use (0,-1,0), you would posi-
tion the camera upside down. Still, in both cases, the camera is still at the same point (0,0,5)
and looking at the same origin (0,0,0). You can summarize these three coordinates like this:

	 •	 (0,0,5):	Eye	point	(location	of	the	camera)

	 •	 (0,0,0):	Look-at	point	(direction	the	camera	is	pointing)

	 •	 (0,1,0):	Up	vector	(whether	the	camera	is	up,	down,	or	slanted)

You will use the gluLookAt method to specify these three points—the eye point, the look-
at point, and the up vector:

gluLookAt(gl, 0,0,5, 0,0,0, 0,1,0);

The arguments are as follows: the first set of coordinates belongs to the eye point, the sec-
ond set of coordinates belongs to the look-at point, and the third set of coordinates belongs to
the up vector with respect to the origin.

Let us turn our attention now to the viewing volume.

glFrustum and the Viewing Volume
You might have noticed that none of the points describing the camera position using gluLookAt
deal with size. They deal only with positioning, direction, and orientation. How can you tell
the camera where to focus? How far away is the subject you are trying to capture? How wide

15967ch10.indd 336 6/5/09 11:16:10 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 10 ■ prOGraMMING 3D GraphICS WIth OpeNGL 337

and how tall is the subject area? You use the OpenGL method glFrustum to specify the area of
the scene that you are interested in.

Think of the scene area as bounded by a box, also called the frustum or viewing volume
(see the area marked by the bold border in the middle of Figure 10-1). Anything inside the box
is captured, and anything outside the box is clipped and ignored. So how do you specify this
viewing box? You first decide on the near point, or the distance between the camera and the
beginning of the box. Then you can choose a far point, which is the distance between the cam-
era and the end of the box. The distance between the near and far points along the z axis is the
depth of the box. If you specify a near point of 50 and a far point of 200, then you will capture
everything between those points and your box depth will be 150. You will also need to specify
the left side of the box, the right side of the box, the top of the box, and the bottom of the box
along the imaginary ray that joins the camera to the look-at point.

In OpenGL, you can imagine this box in one of two ways. One is called a perspective
projection, which involves the frustum we’ve been talking about. This view, which simulates
natural camera-like function, involves a pyramidal structure in which the far plane serves as
the base and the camera serves as the apex. The near plane cuts off the “top” of the pyramid,
forming the frustum between the near plane and the far plane.

The other way to imagine the box involves thinking of it as a cube. This second scenario is
called orthographic projection, which is suited for geometrical drawings that need to preserve
sizes despite the distance from the camera.

Let’s see how to specify the frustum for our example:

//calculate aspect ratio first
float ratio = (float) w / h;

//indicate that we want a perspective projection
glMatrixMode(GL10.GL_PROJECTION);

//Specify the frustum: the viewing volume
gl.glFrustumf(
 -ratio, // Left side of the viewing box
 ratio, // right side of the viewing box
 1, // top of the viewing box
 -1, // bottom of the viewing box
 3, // how far is the front of the box from the camera
 7); // how far is the back of the box from the camera

Because we set the top to 1 and bottom to -1 in the preceding code, we have set the front
height of the box to 2 units. You specify the sizes for the left and right sides of the frustum by
using proportional numbers, taking into account the window’s aspect ratio. This is why this
code uses the window height and width to figure out the proportion. The code also assumes
the area of action to be between 3 and 7 units along the z axis. Anything drawn outside these
coordinates, relative to the camera, won’t be visible.

Because we set the camera at (0,0,5) and pointing toward (0,0,0), 3 units from the camera
toward the origin will be (0,0,2) and 7 units from the camera will be (0,0,-2). This leaves the ori-
gin plane right in the middle of your 3D box.

So now you’ve identified how big your viewing volume is. You need to understand one
more API to map these sizes to the screen: glViewport.

15967ch10.indd 337 6/5/09 11:16:10 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 10 ■ prOGraMMING 3D GraphICS WIth OpeNGL 338

glViewport and Screen Size
glViewport is responsible for specifying the rectangular area on the screen onto which the
viewing volume will be projected. This method takes four arguments to specify the rectangular
box: the x and y coordinates of the lower-left corner, followed by the width and height. Here is
an example of specifying a view as the target for this projection:

glViewport(0, // lower left "x" of the rectangle on the screen
 0, // lower left "y" of the rectangle on the screen
 width, // width of the rectangle on the screen
 height); // height of the rectangle on the screen

If your window or view size is 100 pixels in height and your frustum height is 10 units, then
every logical unit of 1 translates to 10 pixels.

Congratulations. In the last few subsections, you have reached an important milestone in
understanding OpenGL. Most OpenGL books take multiple chapters to bring you to this stage.
This knowledge should keep you in good stead for the rest of the chapter and also for a general
understanding of OpenGL on any platform.

This brings us to the next subsection, where we will explain how the standards-based
OpenGL ES API is tied to Android. This is done through EGL and Android-specific concepts.
We will cover this now, and then go on to the test harness.

Interfacing OpenGL ES with Android
In addition to defining OpenGL ES, The Khronos Group defines a supplemental standard
called EGL that defines what it takes to use the OpenGL ES APIs on a native platform such as
Android. EGL stipulates that you need to get an EGL context based on device-dependent con-
figuration specs. Once you have this EGL context, then you can pass an Android UI object to
this context to get the interface that allows you to call all the OpenGL methods. The next three
subsections will cover these topics:

	 •	 Getting	an	EGL	context

	 •	 Associating	a	drawing	surface	with	OpenGL	ES	through	the	EGL	context

	 •	 Disassociating	the	drawing	surface	from	the	EGL	context	and	closing	out	the	OpenGL	
ES resources

Getting an eGL Context
In the Android SDK distribution, the EGL API is available in the package javax.microedition.
khronos.egl.EGL10. You can read more about using this package at http://java.sun.com/
javame/reference/apis/jsr239/javax/microedition/khronos/egl/EGL10.html.

■Note Although this URL points to a web site about Java, it’s relevant because Android uses the same API.
All of the site’s information on EGL is applicable to Android OpenGL programming as well.

15967ch10.indd 338 6/5/09 11:16:10 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 10 ■ prOGraMMING 3D GraphICS WIth OpeNGL 339

Getting an EGL context involves the following steps:

 1. Get an implementation of EGL10.

 2. Get a display to use.

 3. Initialize the display.

 4. Specify a device-specific configuration to EGL.

 5. Use an initialized display and a configuration to get an EGL context.

Once you have the context, you can bind the context to a window surface every time a
window is created or changed, and then tear it down at the end. We will look at preparing the
window surface and tearing it down in the next subsection.

But first take a look at some boilerplate code to get an EGL context (see Listing 10-2).
Please note that we’re providing this code for illustration purposes only; it’s not meant to be
compiled. You can compile the version of it that we’ll use in the test harness later.

Listing 10-2. Sample Code to Get an EGL Context

//Ask for an implementation of EGL10
EGL10 mEgl = (EGL10) EGLContext.getEGL();

//get the default display
EGLDisplay mEglDisplay = mEgl.eglGetDisplay(EGL10.EGL_DEFAULT_DISPLAY);

//initialize the display
int[] version = new int[2];
mEgl.eglInitialize(mEglDisplay, version);

//config spec
int[] configSpec = {
 EGL10.EGL_DEPTH_SIZE, 0,
 EGL10.EGL_NONE
};

EGLConfig[] configs = new EGLConfig[1];
int[] num_config = new int[1];
mEgl.eglChooseConfig(mEglDisplay, configSpec, configs, 1,
 num_config);
mEglConfig = configs[0];

//Create EGL Context
mEglContext = mEgl.eglCreateContext(mEglDisplay, mEglConfig,
 EGL10.EGL_NO_CONTEXT, null);

The code in Listing 10-2 is pretty standard for establishing a working EGL context, except
for the part where a drawing configuration could differ depending on an application. The
method getEGL returns an implementation for the EGL10 interface. The rest of the methods
use this EGL10 interface in an implementation-independent manner to get to the EGL context.

15967ch10.indd 339 6/5/09 11:16:10 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 10 ■ prOGraMMING 3D GraphICS WIth OpeNGL 340

The method eglGetDisplay returns a default display to connect to, if an EGL_DEFAULT_
DISPLAY constant is passed in. The eglInitialize method initializes the display and returns
major and minor version numbers of the OpenGL implementation.

The next method, eglChooseConfig, is more involved. This method wants you to specify
the types of things that are critical to you as you draw. For example, if you want color sizes
with a bit depth of 8, you might use this configuration spec:

 int[] configAttrs = { EGL10.EGL_RED_SIZE, 8,
 EGL10.EGL_GREEN_SIZE, 8,
 EGL10.EGL_BLUE_SIZE, 8,
 EGL10.EGL_ALPHA_SIZE, EGL10.EGL_DONT_CARE,
 EGL10.EGL_DEPTH_SIZE, EGL10.EGL_DONT_CARE,
 EGL10.EGL_STENCIL_SIZE, EGL10.EGL_DONT_CARE,
 EGL10.EGL_NONE
};

And here’s a suitable configuration spec in which the depth is zero:

int[] configSpec = {
 EGL10.EGL_DEPTH_SIZE, 0,
 EGL10.EGL_NONE
};

Refer to an OpenGL book to get a better understanding of configuration management
under OpenGL. You can also check out the Android SDK OpenGL samples to get a feel for pos-
sible configurations. Based on these configuration specs, the EGL10 implementation returns a
series of suitable EGLConfig references. In this case, the first configuration is chosen.

Finally, you get the needed EGL context by passing an EGLDisplay and an EGLConfig to
eglCreateContext. The third argument of the eglCreateContext method indicates sharing (see
Listing 10-2). Here, we’ve used EGL10.EGL_NO_CONTEXT as the third argument to specify that
we don’t want to share objects with any other context. The last argument is a set of additional
attributes, which we have specified as null.

Once you have this EGL context, you can use it to associate a drawing surface with the
OpenGL ES interface. This interface allows you to call the OpenGL drawing methods. In the
next subsection, you’ll learn how to set up this association.

associating a Drawing Surface with OpenGL eS through the eGL Context
All of the Android SDK’s samples use a view-related class called android.view.SurfaceHolder
in order to draw using OpenGL ES. This class is closely related to android.view.SurfaceView,
which is a variant of a regular view class that allows drawing from a separate thread. The docu-
mentation and samples don’t make it clear whether you can use any other type of view for
OpenGL drawing, so we’ll stick to this android.view.SurfaceHolder object. Even if subsequent
releases of Android were to allow another simpler object for this purpose, you’d just need to
alter the object name and the rest of the explanation should still be valid. SurfaceHolder is
also the recommended class to use for high-performance drawing, so learning about it should
prove helpful to you in any case.

15967ch10.indd 340 6/5/09 11:16:10 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 10 ■ prOGraMMING 3D GraphICS WIth OpeNGL 341

In the “Creating and Using the OpenGL Test Harness” section, we will give you the code
necessary to get a SurfaceView and then get a SurfaceHolder from that, but for now assume that
you have already obtained a SurfaceView. We’ll explain how you use the SurfaceHolder object
through the SurfaceView to get a reference to the OpenGL ES interface (see Listing 10-3).

Listing 10-3. Getting a Reference to the OpenGL ES Interface

android.view.SurfaceHolder holder = surfaceView.getHolder();

// mEgl points to an EGL context interface EGL10
mEglSurface = mEgl.eglCreateWindowSurface(mEglDisplay,
 mEglConfig, holder, null);

mEgl.eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface,
 mEglContext);
GL gl = mEgl.getGL();

In the preceding “Getting an EGL Context” subsection, we showed you how to obtain a
reference to the variable mEgl. You will need to create this EGL context only once for an activity
and keep it for the life of that activity.

The code at the beginning of Listing 10-3 gets a SurfaceHolder object from a previously
obtained SurfaceView (getting the SurfaceView itself is not shown in Listing 10-3). You then
pass the SurfaceHolder object to the eglCreateWindowSurface method to bind the SurfaceView
to OpenGL ES for drawing.

You then use the eglMakeCurrent method to activate the drawing. Once that’s done, you
use the getGL method to get a reference to the OpenGL ES interface.

After executing the code in Listing 10-3, you’ll have a reference to the OpenGL ES inter-
face, which is identified by GL. This interface contains all the standard OpenGL ES APIs.

Note that as the window surface changes, either because of resizing or other reasons, you
need to disassociate and reassociate the window surface so that OpenGL ES can readjust its
internal configuration in response to a changed screen environment (see Listing 10-4).

Listing 10-4. Associating and Disassociating the Window Surface

mEgl.eglMakeCurrent(mEglDisplay, EGL10.EGL_NO_SURFACE,
 EGL10.EGL_NO_SURFACE, EGL10.EGL_NO_CONTEXT);
mEgl.eglDestroySurface(mEglDisplay, mEglSurface);

Closing Out OpenGL at the end of the program
In addition to disassociating the window surface, you should close out the OpenGL ES
resources at the end of a program. Listing 10-5 shows the sequence you need to use; note that
it includes the content from Listing 10-4 at the beginning.

15967ch10.indd 341 6/5/09 11:16:10 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 10 ■ prOGraMMING 3D GraphICS WIth OpeNGL 342

Listing 10-5. Closing Out OpenGL ES Resources

//Destroy surface
mEgl.eglMakeCurrent(mEglDisplay, EGL10.EGL_NO_SURFACE,
 EGL10.EGL_NO_SURFACE,
 EGL10.EGL_NO_CONTEXT);
mEgl.eglDestroySurface(mEglDisplay, mEglSurface);

//Destroy context
mEgl.eglDestroyContext(mEglDisplay, mEglContext);

//Disassociate display
mEgl.eglTerminate(mEglDisplay);

Now you know all the basics necessary to start coding with OpenGL ES APIs. You learned
how to position the camera, work with world coordinates, and map those coordinates to the
physical screen. You know what APIs to use to draw basic figures. You also know how to initial-
ize OpenGL ES on Android.

Because the initialization necessary to start using the OpenGL ES drawing APIs is exten-
sive, we recommend you encapsulate this initialization code into a test harness. You can then
use this test harness again and again with multiple OpenGL ES programming efforts so that
you don’t need to think about or repeat the initialization.

This approach is similar to the approach taken by Android in the 1.5 SDK. In this
approach, we will cover how to do this within the confines of the 1.0 and 1.1 releases. In
Chapter 13, we will cover how the 1.5 SDK provides almost all of this out of the box. Reimple-
menting this test harness using the 1.5 SDK becomes very simple. Even if you care only about
1.5, we strongly recommend that you at least read this section to understand the motivation
for the test harness.

The next section will show you how to design and build this OpenGL test harness, and it
will provide a few specific drawing examples that use it.

Creating and Using the OpenGL Test Harness
The OpenGL test harness that you’ll develop in this section will serve as an excellent tool to
learn and experiment with OpenGL programming. It will hide the OpenGL ES and Android-
specific initializations through the designed encapsulation.

These processes will be encapsulated:

 1. Obtaining an EGL context

 2. Initializing the EGL context with a SurfaceView

 3. Dealing with threading issues when working with the SurfaceView

 4. Setting up the camera to provide a standard set of dimensions for your drawing

We’ll base this test harness on the many OpenGL samples that ship with the Android SDK.
This will allow you to integrate those samples into this framework if you need to do that. The
implementation is loosely based on a Java class in the Android SDK samples (com.example.
android.apis.graphics.GLSurfaceView), but we’ll show you how to code it from the ground

15967ch10.indd 342 6/5/09 11:16:10 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 10 ■ prOGraMMING 3D GraphICS WIth OpeNGL 343

up to give it more abstraction and functionality. Here are some reasons to use the test harness
rather than GLSurfaceView:

	 •	 There	is	no	documentation	on	how	the	complex	sample	code	works.

	 •	 GLSurfaceView is a bit difficult to follow because a number of inner classes obscure the
basic idea.

	 •	 GLSurfaceView assumes that you want to animate everything you draw. For example,
if you were to draw a triangle, GLSurfaceView would draw it again and again in a loop
whether or not a redraw is needed.

	 •	 The	GLSurfaceView abstraction works at a more basic level (mostly around SurfaceView
and threading), so it doesn’t encapsulate camera settings and other common OpenGL
chores.

We’ll help you with these issues as we create and use the test harness. We won’t use any
inner classes to expose the abstractions, so you’ll have a clear understanding of the respon-
sibilities of each class. And we’ll provide you with a class diagram identifying each of the
test-harness classes and their responsibilities (see Figure 10-2).

We’ll also make animation nonessential for the test harness so that you can easily test
your code for simpler cases. We’ll explain every part of the code so you’ll realize how it works.
And once this test harness is in place, you rarely have to modify it. You’ll be able to focus on
your OpenGL code instead.

We will now present the test-harness design and code, as well as some snapshots of the
emulator containing OpenGL drawings.

Designing the Test Harness
The classes that comprise the test harness are shown in the “OpenGL Test Harness Package”
portion of Figure 10-2.

In this diagram, the view you want to draw on is represented by OpenGLTestHarness inher-
iting from SurfaceView. The drawing itself happens in a separate cooperating thread called
OpenGLDrawingThread. This thread needs to be alive for the life of the SurfaceView. As events
happen on or to the SurfaceView, it needs to inform the drawing thread of those events so that
drawing can take place. As you can see from the diagram, a number of these calls are delegated
to the OpenGLDrawingThread.

The thread itself needs to get an EGL context at the beginning and tear it down at the end.
As the window comes into existence and changes size, the thread needs to bind and unbind
the EGL context to this window. OpenGLDrawingThread uses a utility class called EglHelper to
help with this work.

In the end, the test harness assumes that the variable parts of the OpenGL drawing
are concentrated in a class implementing the Renderer interface. An implementation of the
Renderer interface is responsible for actions such as setting the camera, positioning the
camera, and setting coordinates for the viewing box (frustum).

If you agree upon a given size or volume for your viewing box, you can abstract this class
out even further and leave only the drawing portion to the leaf-level implementation class. The
AbstractRenderer class abstracts out these camera- and size-related operations. That leaves
you to focus on the OpenGL drawing APIs.

15967ch10.indd 343 6/5/09 11:16:10 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 10 ■ prOGraMMING 3D GraphICS WIth OpeNGL 344

Your OpenGL Application Package

Open GL Test Harness Package

OpenGL
TestHarness

OpenGL
Drawing

Thread

uses

Renderer
(Interface)

AbstractRenderer

implements

EglHelper

SurfaceCreated

surfaceDestroyed

onPause

onResume

onWindowResize

onWindowFocusChanged getConfigSpec

surfaceCreated

sizeChanged

drawFrame

SampleTriangleRenderer SampleTriangleRenderer2

extends

Android SDK Packages
SurfaceView SurfaceHolder.CallBack

extends

us
es

implements

ex
te

nd
s

redirects to

Figure 10-2. Class diagram for the OpenGL test harness

15967ch10.indd 344 6/5/09 11:16:10 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 10 ■ prOGraMMING 3D GraphICS WIth OpeNGL 345

Consider the source code for each class in the test harness. The test harness contains the
following files:

	 •	 OpenGLTestHarnessActivity.java: A simple activity hosting the SurfaceView

	 •	 OpenGLTestHarness.java: A SurfaceView tailored for OpenGL threaded drawing

	 •	 OpenGLDrawingThread.java: The thread responsible for drawing on the SurfaceView

	 •	 EglHelper.java: A utility class responsible for obtaining the EGL context

	 •	 Renderer.java: A pure interface for extending drawing code

	 •	 AbstractRenderer.java: A class that abstracts drawing further, leaving only the draw
method to be abstracted; also sets up the camera and window sizes

	 •	 SimpleTriangleRenderer.java: A simple triangle drawing

	 •	 SimpleTriangleRenderer2.java: A variation of a triangle drawing using indices

The following subsections present code for each of these files. You can create your test
harness by taking these classes and building them into your own project. Each source listing
is followed by commentary on the important parts of the source code. For brevity, we won’t
include the import statements. In Eclipse, you can automatically populate the import state-
ments by pulling up the code in the editor and selecting Source ➤ Organize Imports.

Make sure you create corresponding Java files for each class listed here before compiling.
The files are presented in a logical order, but not necessarily a compilable order. You will need
at least the first seven files to compile successfully; you can compile the eighth file later.

You can use the following steps to compile these files:

 1. Choose a simple project you already have, such as the “Hello World!” application from
Chapter 2 or the menu test harness from Chapter 5.

 2. Create new classes with names that match our eight classes. Replace the body of each
class with the corresponding source code from this chapter (except the package name).

 3. Use Ctrl+Shift+O to resolve the imports. You might see some errors initially, but they
should all disappear as soon as you have the seven or eight files in place.

 4. Use a menu from the simple project in step 1 to invoke the test-harness activity. We
will further explain this step after presenting all the source files.

With that, we will list each of the files now.

OpenGLTestHarnessActivity.java
OpenGLTestHarnessActvity is a driver class for the test harness. This is a simple Android activ-
ity that uses an implementation of the SurfaceView (OpenGLTestHarness) as its content view
(see Listing 10-6).

15967ch10.indd 345 6/5/09 11:16:10 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 10 ■ prOGraMMING 3D GraphICS WIth OpeNGL 346

Listing 10-6. Code for the OpenGLTestHarnessActivity Class

// filename: OpenGLTestHarnessActivity.java
public class OpenGLTestHarnessActivity extends Activity {
 private OpenGLTestHarness mTestHarness;
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 mTestHarness = new OpenGLTestHarness(this);
 mTestHarness.setRenderer(new SimpleTriangleRenderer(this));
 setContentView(mTestHarness);
 }
 @Override
 protected void onResume() {
 super.onResume();
 mTestHarness.onResume();
 }
 @Override
 protected void onPause() {
 super.onPause();
 mTestHarness.onPause();
 }
}

As you come up with new OpenGL renderers, all you have to do is instantiate an
OpenGLTestHarness and set it into this activity as a renderable view.

OpenGLTestHarness.java
The OpenGLTestHarness class is an implementation of the SurfaceView, and its primary respon-
sibility is to transfer all UI events to the supporting drawing thread so the drawing thread can
make the necessary decisions to draw (see Listing 10-7).

Listing 10-7. The OpenGLTestHarness Class

// filename: OpenGLTestHarness.java
public class OpenGLTestHarness extends SurfaceView
 implements SurfaceHolder.Callback
{
 public static final Semaphore sEglSemaphore = new Semaphore(1);
 public boolean mSizeChanged = true;
 public SurfaceHolder mHolder;
 private OpenGLDrawingThread mGLThread;

 public OpenGLTestHarness(Context context) {
 super(context);
 init();
 }

15967ch10.indd 346 6/5/09 11:16:11 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 10 ■ prOGraMMING 3D GraphICS WIth OpeNGL 347

 public OpenGLTestHarness(Context context, AttributeSet attrs) {
 super(context, attrs);
 init();
 }

 private void init() {
 mHolder = getHolder();
 mHolder.addCallback(this);
 mHolder.setType(SurfaceHolder.SURFACE_TYPE_GPU);
 }

 public SurfaceHolder getSurfaceHolder() {
 return mHolder;
 }

 public void setRenderer(Renderer renderer) {
 mGLThread = new OpenGLDrawingThread(this,renderer);
 mGLThread.start();
 }

 public void surfaceCreated(SurfaceHolder holder) {
 mGLThread.surfaceCreated();
 }

 public void surfaceDestroyed(SurfaceHolder holder) {
 mGLThread.surfaceDestroyed();
 }

 public void surfaceChanged(SurfaceHolder holder, int format, int w, int h) {
 mGLThread.onWindowResize(w, h);
 }

 public void onPause() {
 mGLThread.onPause();
 }

 public void onResume() {
 mGLThread.onResume();
 }

 @Override public void onWindowFocusChanged(boolean hasFocus) {
 super.onWindowFocusChanged(hasFocus);
 mGLThread.onWindowFocusChanged(hasFocus);
 }

15967ch10.indd 347 6/5/09 11:16:11 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 10 ■ prOGraMMING 3D GraphICS WIth OpeNGL 348

 @Override
 protected void onDetachedFromWindow() {
 super.onDetachedFromWindow();
 mGLThread.requestExitAndWait();
 }
}

There is nothing significant about the boilerplate code in Listing 10-7. You use this pattern
when you want another thread to draw on a SurfaceView. Now you’ll look at the code for the
drawing thread.

OpenGLDrawingThread.java
OpenGLDrawingThread (see Listing 10-8) is responsible for drawing OpenGL objects on the
OpenGLTestHarness surface view. These two classes collaborate with each other closely.

Listing 10-8. The OpenGLDrawingThread Class

// filename: OpenGLDrawingThread.java
class OpenGLDrawingThread extends Thread
{
 private boolean mDone, mPaused, mHasFocus;
 private boolean mHasSurface, mContextLost, mSizeChanged;
 private int mWidth,mHeight;

 private Renderer mRenderer;
 private EglHelper mEglHelper;
 private OpenGLTestHarness pSv = null;

 OpenGLDrawingThread(OpenGLTestHarness sv, Renderer renderer) {
 super();
 mDone = false; mWidth = 0; mHeight = 0;
 mRenderer = renderer; mSizeChanged = false;
 setName("GLThread");
 pSv = sv;
 }

 @Override
 public void run() {
 try {
 try {
 OpenGLTestHarness.sEglSemaphore.acquire();
 } catch (InterruptedException e) {
 return;
 }
 guardedRun();
 } catch (InterruptedException e) {
 // fall thru and exit normally

15967ch10.indd 348 6/5/09 11:16:11 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 10 ■ prOGraMMING 3D GraphICS WIth OpeNGL 349

 } finally {
 OpenGLTestHarness.sEglSemaphore.release();
 }
 }
 private void guardedRun() throws InterruptedException {
 mEglHelper = new EglHelper();
 int[] configSpec = mRenderer.getConfigSpec();
 mEglHelper.start(configSpec);

 GL10 gl = null;
 boolean tellRendererSurfaceCreated = true;
 boolean tellRendererSurfaceChanged = true;

 while (!mDone)
 {
 int w, h;
 boolean changed;
 boolean needStart = false;
 synchronized (this) {
 if (mPaused) {
 Log.d("x", "Paused");
 mEglHelper.finish();
 needStart = true;
 }
 if(needToWait()) {
 while (needToWait()) {
 wait();
 Log.d("x", "woke up from wait");
 }
 }
 if (mDone) {
 break;
 }
 changed = pSv.mSizeChanged;
 w = mWidth;
 h = mHeight;
 pSv.mSizeChanged = false;
 this.mSizeChanged = false;
 }
 if (needStart) {
 Log.d("x", "Need to start");
 mEglHelper.start(configSpec);
 tellRendererSurfaceCreated = true;
 changed = true;

15967ch10.indd 349 6/5/09 11:16:11 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 10 ■ prOGraMMING 3D GraphICS WIth OpeNGL 350

 }
 if (changed) {
 Log.d("x", "Change");
 gl = (GL10) mEglHelper.createSurface(pSv.mHolder);
 tellRendererSurfaceChanged = true;
 }
 if (tellRendererSurfaceCreated) {
 Log.d("x", "Render Surface created");
 mRenderer.surfaceCreated(gl);
 tellRendererSurfaceCreated = false;
 }
 if (tellRendererSurfaceChanged) {
 Log.d("x", "Render Surface changed");
 mRenderer.sizeChanged(gl, w, h);
 tellRendererSurfaceChanged = false;
 }
 if ((w > 0) && (h > 0)) {

 Log.d("x", "Drawing frame now");
 mRenderer.drawFrame(gl);
 mEglHelper.swap();
 }
 }
 mEglHelper.finish();
 }

 private boolean needToWait() {
 return ((!mSizeChanged) || mPaused || (! mHasFocus) || (! mHasSurface)
 || mContextLost)
 && (! mDone);
 }

 public void surfaceCreated() {
 synchronized(this) {
 mHasSurface = true;
 mContextLost = false;
 notify();
 }
 }
 public void surfaceDestroyed() {
 synchronized(this) {
 mHasSurface = false;
 notify();
 }
 }

15967ch10.indd 350 6/5/09 11:16:11 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 10 ■ prOGraMMING 3D GraphICS WIth OpeNGL 351

 public void onPause() {
 synchronized (this) {
 mPaused = true;
 }
 }
 public void onResume() {
 synchronized (this) {
 mPaused = false;
 notify();
 }
 }
 public void onWindowFocusChanged(boolean hasFocus) {
 synchronized (this) {
 mHasFocus = hasFocus;
 if (mHasFocus == true) {
 notify();
 }
 }
 }
 public void onWindowResize(int w, int h) {
 synchronized (this) {
 mWidth = w;
 mHeight = h;
 pSv.mSizeChanged = true;
 this.mSizeChanged = true;
 Log.d("x","window size changed. w, h:" + w + "," + h);
 if (w > 0)
 {
 notify();
 }
 }
 }
 public void requestExitAndWait()
 {
 synchronized(this) {
 mDone = true;
 notify();
 }
 try {
 join();
 } catch (InterruptedException ex) {
 Thread.currentThread().interrupt();
 }
 }
}

15967ch10.indd 351 6/5/09 11:16:11 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 10 ■ prOGraMMING 3D GraphICS WIth OpeNGL 352

OpenGLDrawingThread is critical to understanding the interaction between OpenGL ES and
the Android SDK. The OpenGLTestHarness class starts the drawing thread as soon as a renderer
is set in the harness. According to the Android documentation, the first thing the run method
needs to do is to wait for any previous instances to close and ensure that only one activity is
running. This is because there are timing issues between onDestroy() and onCreate(). Either
way, the practice is to ensure exclusive access through a semaphore.

Once the thread starts running, it will get the configSpec from the renderer and use that
spec to initialize the EglHelper. EglHelper will then be used to obtain an EGL context. This is
how EglHelper initializes the display and uses the display configuration to create the context
based on the principles we covered in the “Getting an EGL Context” subsection.

Once the OpenGL ES interface is established through the EglHelper, the thread has to wait
for a window to be created before drawing can take place. Without a window, you don’t have
anything to bind to the EGL context. In effect, the while loop goes into a wait mode. When a
window is created or resized, the corresponding method calls from the OpenGLTestHarness
SurfaceView wakes up the thread using notify. The thread will then bind the EGL context to
the window and then draw. Once the drawing is complete, the thread uses the eglSwapBuffers
method of EglHelper to transfer the paint buffers to the screen.

After that, the thread must return to wait mode so that it can respond to further events
onscreen such as resizing, pausing, resuming, and so on. This is why the while loop needs to
continue indefinitely. Pay special attention to the needToWait() function and the correspond-
ing notify events. The needToWait() function halts the thread if the size hasn’t changed, or if
the surface hasn’t been created, or if the focus is not there. You can enable this thread for ani-
mation if you opt not to check for the flag that indicates a size change. This will allow redraws
even when the size doesn’t change, which essentially is the basis of animation.

Now you’ll see how the code for EglHelper can help you obtain the EGL context.

EglHelper.java
We have already explained the basics of what happens in the EglHelper code, such as using the
configSpec, getting EGL displays, and so on. The code in Listing 10-9 reiterates those ideas, but
it’s more complete than the code you’ve seen so far.

Listing 10-9. The EglHelper Class

//filename: EglHelper.java
public class EglHelper
{
 EGL10 mEgl; EGLDisplay mEglDisplay; EGLSurface mEglSurface;
 EGLConfig mEglConfig; EGLContext mEglContext;
 public EglHelper(){}
 public void start(int[] configSpec)
 {
 mEgl = (EGL10) EGLContext.getEGL();
 mEglDisplay = mEgl.eglGetDisplay(EGL10.EGL_DEFAULT_DISPLAY);

 int[] version = new int[2];
 mEgl.eglInitialize(mEglDisplay, version);

15967ch10.indd 352 6/5/09 11:16:11 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 10 ■ prOGraMMING 3D GraphICS WIth OpeNGL 353

 EGLConfig[] configs = new EGLConfig[1];
 int[] num_config = new int[1];
 mEgl.eglChooseConfig(mEglDisplay, configSpec, configs, 1,
 num_config);
 mEglConfig = configs[0];

 mEglContext = mEgl.eglCreateContext(mEglDisplay, mEglConfig,
 EGL10.EGL_NO_CONTEXT, null);

 mEglSurface = null;
 }
 public GL createSurface(SurfaceHolder holder) {
 if (mEglSurface != null) {
 mEgl.eglMakeCurrent(mEglDisplay, EGL10.EGL_NO_SURFACE,
 EGL10.EGL_NO_SURFACE, EGL10.EGL_NO_CONTEXT);
 mEgl.eglDestroySurface(mEglDisplay, mEglSurface);
 }
 mEglSurface = mEgl.eglCreateWindowSurface(mEglDisplay,
 mEglConfig, holder, null);
 mEgl.eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface,
 mEglContext);
 GL gl = mEglContext.getGL();
 return gl;
 }
 public boolean swap() {
 mEgl.eglSwapBuffers(mEglDisplay, mEglSurface);
 return mEgl.eglGetError() != EGL11.EGL_CONTEXT_LOST;
 }
 public void finish() {
 if (mEglSurface != null) {
 mEgl.eglMakeCurrent(mEglDisplay, EGL10.EGL_NO_SURFACE,
 EGL10.EGL_NO_SURFACE,
 EGL10.EGL_NO_CONTEXT);
 mEgl.eglDestroySurface(mEglDisplay, mEglSurface);
 mEglSurface = null;
 }
 if (mEglContext != null) {
 mEgl.eglDestroyContext(mEglDisplay, mEglContext);
 mEglContext = null;
 }
 if (mEglDisplay != null) {
 mEgl.eglTerminate(mEglDisplay);
 mEglDisplay = null;
 }
 }
}

15967ch10.indd 353 6/5/09 11:16:11 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 10 ■ prOGraMMING 3D GraphICS WIth OpeNGL 354

Now let’s take a look at the Renderer interface that needs to be implemented by your own
OpenGL drawing subclasses.

Renderer.java
The Renderer interface tells the test harness what it intends to draw (see Listing 10-10). Any
class that implements this protocol will be able to draw using OpenGL.

Listing 10-10. The Methods of the Renderer Protocol

//filename: Renderer.java
public interface Renderer
{
 int[] getConfigSpec();
 void surfaceCreated(GL10 gl);
 void sizeChanged(GL10 gl, int width, int height);
 void drawFrame(GL10 gl);
}

The getConfigSpec() method is responsible for returning the OpenGL configuration
necessary to construct an EGL context. In the surfaceCreated() method, the implementer
is responsible for unbinding and binding the EGL context to the surface or window. You will
need to set the viewport and zoom in the sizeChanged method. drawFrame() is responsible for
the actual OpenGL drawing of the model objects.

AbstractRenderer.java
The way you bind and unbind the EGL context to the surface and the way you set the viewport,
camera, and so on could be common to a number of scenarios. With this in mind, we have
abstracted this functionality out further by creating an abstract class to deal with these varia-
tions (see Listing 10-11).

Listing 10-11. The AbstractRenderer Class

//filename: AbstractRenderer.java
public abstract class AbstractRenderer implements Renderer
{
 public int[] getConfigSpec() {
 int[] configSpec = {
 EGL10.EGL_DEPTH_SIZE, 0,
 EGL10.EGL_NONE
 };
 return configSpec;
 }

15967ch10.indd 354 6/5/09 11:16:11 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 10 ■ prOGraMMING 3D GraphICS WIth OpeNGL 355

 public void surfaceCreated(GL10 gl) {
 gl.glDisable(GL10.GL_DITHER);
 gl.glHint(GL10.GL_PERSPECTIVE_CORRECTION_HINT,
 GL10.GL_FASTEST);
 gl.glClearColor(.5f, .5f, .5f, 1);
 gl.glShadeModel(GL10.GL_SMOOTH);
 gl.glEnable(GL10.GL_DEPTH_TEST);
 }

 public void sizeChanged(GL10 gl, int w, int h) {
 gl.glViewport(0, 0, w, h);
 float ratio = (float) w / h;
 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();
 gl.glFrustumf(-ratio, ratio, -1, 1, 3, 7);
 }

 public void drawFrame(GL10 gl)
 {
 gl.glDisable(GL10.GL_DITHER);
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 GLU.gluLookAt(gl, 0, 0, -5, 0f, 0f, 0f, 0f, 1.0f, 0.0f);
 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
 draw(gl);
 }
 protected abstract void draw(GL10 gl);
}

Based on our explanation of the camera symbolism, you should be able to understand this
code, especially how the gluLookAt, glFrustum, and glViewport methods are used.

The aforementioned six classes complete the test harness. The next two classes exercise
the test harness by drawing a simple triangle and a few variations of it. You will need at least
one of these classes to be able to see something on the emulator.

SimpleTriangleRenderer.java
Now that you have the test harness built, you can use the following coordinates to draw an
OpenGL triangle:

float[] coords = {
 -0.5f, -0.5f, 0, //p1: (x1,y1,z1)
 0.5f, -0.5f, 0, //p2: (x1,y1,z1)
 0.0f, 0.5f, 0 //p3: (x1,y1,z1)
};

15967ch10.indd 355 6/5/09 11:16:11 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 10 ■ prOGraMMING 3D GraphICS WIth OpeNGL 356

Our goal in this example is to take these coordinates and tell OpenGL ES to draw them
as a triangle. Based on our discussion in the “Essential Drawing with OpenGL ES” subsection
under “Using OpenGL ES,” you should be able to figure out how the code in Listing 10-12
accomplishes that.

Listing 10-12. Drawing a Simple Triangle

//filename: SimpleTriangleRenderer.java
public class SimpleTriangleRenderer extends AbstractRenderer
{
 //Number of points or vertices we want to use
 private final static int VERTS = 3;

 //A raw native buffer to hold the point coordinates
 private FloatBuffer mFVertexBuffer;

 //A raw native buffer to hold indices
 //allowing a reuse of points.
 private ShortBuffer mIndexBuffer;

 public SimpleTriangleRenderer(Context context)
 {
 ByteBuffer vbb = ByteBuffer.allocateDirect(VERTS * 3 * 4);
 vbb.order(ByteOrder.nativeOrder());
 mFVertexBuffer = vbb.asFloatBuffer();

 ByteBuffer ibb = ByteBuffer.allocateDirect(VERTS * 2);
 ibb.order(ByteOrder.nativeOrder());
 mIndexBuffer = ibb.asShortBuffer();

 float[] coords = {
 -0.5f, -0.5f, 0, // (x1,y1,z1)
 0.5f, -0.5f, 0,
 0.0f, 0.5f, 0
 };
 for (int i = 0; i < VERTS; i++) {
 for(int j = 0; j < 3; j++) {
 mFVertexBuffer.put(coords[i*3+j]);
 }
 }

15967ch10.indd 356 6/5/09 11:16:11 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 10 ■ prOGraMMING 3D GraphICS WIth OpeNGL 357

 short[] myIndecesArray = {0,1,2};
 for (int i=0;i<3;i++)
 {
 mIndexBuffer.put(myIndecesArray[i]);
 }
 mFVertexBuffer.position(0);
 mIndexBuffer.position(0);
 }

 //overridden method
 protected void draw(GL10 gl)
 {
 gl.glColor4f(1.0f, 0, 0, 0.5f);
 gl.glVertexPointer(3, GL10.GL_FLOAT, 0, mFVertexBuffer);
 gl.glDrawElements(GL10.GL_TRIANGLES, VERTS,
 GL10.GL_UNSIGNED_SHORT, mIndexBuffer);
 }
}

Notice how focused and sparse this code is. This level of simplicity and directness should
encourage experimentation with OpenGL. The code in Listing 10-12 sets up the draw method
based on the aforementioned principles for drawing a triangle. In preparation for the draw
method, the code identifies the points and transports the point coordinates to a buffer. You do
the same with indices for those points. Then you draw the triangle using glDrawElements.

Once you compile all this code, you can invoke the OpenGLTestHarnessActivity by using
the following code segment in response to one of your menu items:

Intent intent = new Intent(activity,OpenGLTestHarnessActivity.class);
activity.startActivity(intent);

In this small code snippet, the variable activity points to the activity from which your
menu item is invoked. If you are doing it in the same derived class of Activity, you can simply
use the this variable.

You will also need to register this activity in the AndroidManifest.xml file for your applica-
tion. Here is an example:

<activity android:name=".OpenGLTestHarnessActivity"
 android:label="OpenGL Test Harness"/>

With all of this code in place, you should see the Figure 10-3 screen in your emulator when
you run the program and invoke the activity.

15967ch10.indd 357 6/5/09 11:16:11 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 10 ■ prOGraMMING 3D GraphICS WIth OpeNGL 358

Figure 10-3. A simple OpenGL triangle

Changing Camera Settings
To understand the coordinates better, let us experiment with the camera-related methods
and see how they affect the triangle that you drew. Remember that these are the points of our
triangle: (-0.5,-0.5,0 0.5,-0.5,0 0,0.5,0). The following three camera-related methods
yield the triangle as it appears in Figure 10-3:

//Look at the screen (origin) from 5 units away from the front of the screen
GLU.gluLookAt(gl, 0,0,5, 0,0,0, 0,1,0);

//Set the height to 2 units and depth to 4 units
gl.glFrustumf(-ratio, ratio, -1, 1, 3, 7);

//normal window stuff
gl.glViewport(0, 0, w, h);

15967ch10.indd 358 6/5/09 11:16:11 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 10 ■ prOGraMMING 3D GraphICS WIth OpeNGL 359

Now suppose you change the camera’s up vector toward the negative y direction, like this:

GLU.gluLookAt(gl, 0,0,5, 0,0,0, 0,-1,0);

If you do that, you’ll see an upside-down triangle (see Figure 10-4). If you want to make
this change or something like it, you can find the method in the AbstractRenderer.java file.

Figure 10-4. A triangle with the camera upside down

If you use this code to increase the viewing box’s height and width by a factor of four as
shown here,

gl.glFrustumf(-ratio * 4, ratio * 4, -1 * 4, 1 *4, 3, 7);

you will see the triangle shrink because the triangle stays at the same units while our viewing
box has grown. This method call appears in the AbstractRenderer.java class (see Listing 10-11).
What you see after this change is shown in Figure 10-5.

If you change the camera position so that it looks at the screen from behind, you will see
your coordinates reversed in the x-y plane. You can set this up through the following code:

GLU.gluLookAt(gl, 0,0,-5, 0,0,0, 0,1,0);

15967ch10.indd 359 6/5/09 11:16:11 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 10 ■ prOGraMMING 3D GraphICS WIth OpeNGL 360

Figure 10-5. A triangle with a viewing box that’s four times bigger

Using Indices to Add Another Triangle
Let us conclude the examples by inheriting from the AbstractRenderer class and creating
another triangle simply by adding another point and using indices. Conceptually, you’ll define
the four points as (-1,-1, 1,-1, 0,1, 1,1). And you will ask OpenGL to draw these
as (0,1,2 0,2,3). Listing 10-13 shows the code to do this. (Notice that we changed the
dimensions of the triangle.)

Listing 10-13. The SimpleTriangleRenderer2 Class

//filename: SimpleTriangleRenderer2.java
public class SimpleTriangleRenderer2 extends AbstractRenderer
{
 private final static int VERTS = 4;
 private FloatBuffer mFVertexBuffer;
 private ShortBuffer mIndexBuffer;

15967ch10.indd 360 6/5/09 11:16:12 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 10 ■ prOGraMMING 3D GraphICS WIth OpeNGL 361

 public SimpleTriangleRenderer2(Context context)
 {
 ByteBuffer vbb = ByteBuffer.allocateDirect(VERTS * 3 * 4);
 vbb.order(ByteOrder.nativeOrder());
 mFVertexBuffer = vbb.asFloatBuffer();

 ByteBuffer ibb = ByteBuffer.allocateDirect(6 * 2);
 ibb.order(ByteOrder.nativeOrder());
 mIndexBuffer = ibb.asShortBuffer();

 float[] coords = {
 -1.0f, -1.0f, 0, // (x1,y1,z1)
 1.0f, -1.0f, 0,
 0.0f, 1.0f, 0,
 1.0f, 1.0f, 0
 };
 for (int i = 0; i < VERTS; i++) {
 for(int j = 0; j < 3; j++) {
 mFVertexBuffer.put(coords[i*3+j]);
 }
 }
 short[] myIndecesArray = {0,1,2, 0,2,3};
 for (int i=0;i<6;i++)
 {
 mIndexBuffer.put(myIndecesArray[i]);
 }
 mFVertexBuffer.position(0);
 mIndexBuffer.position(0);
 }

 protected void draw(GL10 gl)
 {
 gl.glColor4f(1.0f, 0, 0, 0.5f);
 gl.glVertexPointer(3, GL10.GL_FLOAT, 0, mFVertexBuffer);
 gl.glDrawElements(GL10.GL_TRIANGLES, 6, GL10.GL_UNSIGNED_SHORT,
 mIndexBuffer);
 }
}

Once the SimpleTriangleRenderer2 class is in place, you can change the code in the
OpenGLTestHarnessActivity to invoke this renderer instead of the SimpleTriangleRenderer:

mTestHarness = new OpenGLTestHarness(this);
mTestHarness.setRenderer(new SimpleTriangleRenderer2(this));

The changed portion is highlighted. After you change this code, you can run the
OpenGLTestHarnessActivity again to see the two triangles drawn out (see Figure 10-6).

15967ch10.indd 361 6/5/09 11:16:12 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 10 ■ prOGraMMING 3D GraphICS WIth OpeNGL 362

Figure 10-6. Two triangles with four points

Altering this code to allow for animation is quite simple. Update the guardedRun() method
in the OpenGLDrawingThread.java class so the while loop won’t wait to redraw as long as
the width and height are valid. This will allow continuous redraw()s even when there is no
resize(). Once a draw method is called multiple times, you can use the matrix methods to
rotate, scale, and move. At that point, the ideas are similar to the ones we presented in
Chapter 6.

Summary
In this chapter, we covered the basics of OpenGL support in Android. We provided resources
to help you learn more about OpenGL, and we explored how Android uses OpenGL ES from
its SDK. You should now have enough background to work with the OpenGL samples that ship
with the Android SDK. We also gave you a convenient, simplified test harness that you can use
to explore OpenGL further. After experimenting with the samples and the test harness, you
should be ready for advanced development with Android and OpenGL.

If you are coding in the 1.5 SDK, do read Chapters 12 and 13. Chapter 12 introduces you to
the 1.5 SDK and Chapter 13 covers the simplified approach to OpenGL. However, the first two
sections of this chapter are still applicable and mandatory reading even under SDK 1.5.

15967ch10.indd 362 6/5/09 11:16:12 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

C h a p t e r 1 1

Managing and Organizing
preferences

Like many other SDKs, Android supports preferences. Generally speaking, it tracks pref-
erences for users of an application as well as the application itself. For example, a user of
Microsoft Outlook might set a preference to view e-mail messages a certain way, and Microsoft
Outlook itself has some default preferences that are configurable by users. But even though
Android theoretically tracks preferences for both users and the application, it does not differ-
entiate between the two. The reason for this is that Android applications run on a device that is
generally not shared among several users—people don’t share cell phones. So Android refers
to preferences with the term application preferences, which encompasses both the user’s pref-
erences and the application’s default preferences.

When you see Android’s preferences support for the first time, you’ll likely be impressed.
Android offers a robust and flexible framework for dealing with preferences. It provides simple
APIs that hide the reading and persisting of preferences, as well as prebuilt user interfaces that
you can use to let the user make preference selections. We will explore all of these features in
the sections that follow.

Exploring the Preferences Framework
Before we dig into Android’s preferences framework, let’s establish a scenario that would
require the use of preferences and then explore how we would go about addressing it. Suppose
you are writing an application that provides a facility to search for flights. Moreover, suppose
that the application’s default setting is to display flights based on the lowest cost, but that the
user can set a preference to always sort flights by the least number of stops or by a specific air-
line. How would you go about doing that?

Obviously, you would have to provide a UI for the user to view the list of sort options.
The list would contain radio buttons for each option, and the default (or current) selection
would be preselected. To solve this problem with the Android preferences framework requires
very little work. First, you would create a preferences XML file to describe the preference and
then use a prebuilt activity class that knows how to show and persist preferences. Listing 11-1
shows the details.

363

15967ch11.indd 363 6/5/09 11:15:56 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 11 ■ MaNaGING aND OrGaNIZ ING preFereNCeS364

Listing 11-1. The Flight-Options Preferences XML File and Associated Activity Class

<?xml version="1.0" encoding="utf-8"?>
 <PreferenceScreen
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:key="flight_option_preference"
 android:title="My Preferences"
 android:summary="Set Flight Option Preferences">
 <ListPreference
 android:key="selected_flight_sort_option"
 android:title="Flight Options"
 android:summary="Set Search Options"
 android:entries="@array/flight_sort_options"
 android:entryValues="@array/flight_sort_options_values"
 android:dialogTitle="Choose Flight Options"
 android:defaultValue="@string/flight_sort_option_default_value"/>

 </PreferenceScreen>

import android.os.Bundle;
import android.preference.PreferenceActivity;
public class FlightSortPreferencesActivity extends PreferenceActivity
{

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 addPreferencesFromResource(R.xml.flightoptions);
 }

}

Listing 11-1 contains an XML fragment that represents the flight-option preference setting.
The listing also contains an activity class that loads the preferences XML file. Let’s start with
the XML. Android provides an end-to-end preferences framework. This means that the frame-
work lets you define your preferences, display the setting(s) to the user, and persist the user’s
selection to the data store. You define your preferences in XML under /res/xml/. To show pref-
erences to the user, you write an activity class that extends a predefined Android class called
android.preference.PreferenceActivity, and then use the addPreferencesFromResource()
method to add the resource to the activity’s resource collection. The framework takes care of
the rest (displaying and persisting). Note that the Android 1.5 SDK also provides a user inter-
face that can generate preferences XML files. See Chapter 12 for details.

15967ch11.indd 364 6/5/09 11:15:57 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 11 ■ MaNaGING aND OrGaNIZ ING preFereNCeS 365

In this flight scenario, you create a file called flightoptions.xml at /res/xml/
flightoptions.xml. You then create an activity class called FlightSortPreferencesActivity
that extends the android.preference.PreferenceActivity class. Next, you call
addPreferencesFromResource(), passing in R.xml.flightoptions. Note that the preference
resource XML points to several string resources. To ensure compilation, you need to add
several string resources to your project. We will show you how to do that shortly. For now,
have a look at the UI generated by Listing 11-1 (see Figure 11-1).

Figure 11-1. The flight-options preference UI

Figure 11-1 contains two views. The view on the left is called a preference screen and the
UI on the right is a list preference. When the user selects “Flight Options,” the “Choose Flight
Options” view appears as a modal dialog with radio buttons for each option. The user selects
an option and clicks the OK button. The framework then saves the user’s selection. When the
user returns to the options screen, the view reflects the saved selection.

As we discussed, the preferences XML file and associated activity class are shown in
Listing 11-1. The code in that listing defines a PreferenceScreen and then creates a
ListPreference as a child. For the PreferenceScreen, you set three properties: key, title,
and summary. key is a string you can use to refer to the item programmatically (similar to how
you use android:id); title is the screen’s title (“Flight Options”); and summary is a description
of the screen’s purpose, shown below the title in a smaller font (“Set Search Options,” in
this case). For the list preference, you set the key, title, and summary, as well as entries for
entryValues, dialogTitle, and defaultValue. Table 11-1 summarizes these attributes.

15967ch11.indd 365 6/5/09 11:15:57 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 11 ■ MaNaGING aND OrGaNIZ ING preFereNCeS366

Table 11-1. A Few Attributes of android.preference.ListPreference

Attribute Description

android:key A name or key for the item (such as selected_flight_sort_option).

android:title The title of the item.

android:summary A short summary of the item.

android:entries The items in the list. In our list preference, you set the entries to a
string array defined in the arrays.xml resource file (at /res/values/
arrays.xml):
<string-array name="flight_sort_options">
 <item>Total Cost</item>
 <item># of Stops</item>
 <item>Airline</item>
</string-array>
You must place this entry in /res/values/arrays.xml.

android:entryValues Defines the key, or value, for each item. In our list preference, you set
the entryValues to a string array defined in the arrays.xml file.
 <string-array name="flight_sort_options_values">
 <item>0</item>
 <item>1</item>
 <item>2</item>
 </string-array>
Note that each item has some text and a value. The text is defined by
entries and the values are defined by entryValues.
You must place this entry in /res/values/arrays.xml.

android:dialogTitle The title of the dialog—used if the view is shown as a modal dialog.

android:defaultValue The default value of the list. In our case, you set it to 0 to indicate
Total Cost.
<string name="flight_sort_option_default_value">0</string>
You must place this entry in /res/values/string.xml.

As we said earlier, the Android framework also takes care of persisting preferences. For
example, when the user selects a sort option and clicks OK, Android stores the selection in an
XML file within the application’s /data directory (see Figure 11-2).

Figure 11-2. Path to an application’s saved preferences

The actual file path is /data/data/[PACKAGE_NAME]/shared_prefs/[PACKAGE_NAME]_
preferences.xml. Listing 11-2 shows the com.syh_preferences.xml file for our example.

15967ch11.indd 366 6/5/09 11:15:57 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 11 ■ MaNaGING aND OrGaNIZ ING preFereNCeS 367

Listing 11-2. Saved Preferences for Our Example

<?xml version='1.0' encoding='utf-8' standalone='yes' ?>
<map>
 <string name="selected_flight_sort_option">1</string>
</map>

You can see that for a list preference, the preferences framework persists the selected
item’s value using the list’s key attribute. Note also that the selected item’s value is stored—
not the text. To read the saved preference, you would use this code:

SharedPreferences sp = getPreferenceManager().getDefaultSharedPreferences(this);
String option = sp.getString("selected_flight_sort_option", null);

From an activity that extends PreferenceActivity, you obtain a reference to the prefer-
ence manager. From there, get a hold of the default shared-preference instance and then use
the various methods to obtain saved preferences. As shown in the preceding code snippet,
you read the saved flight option by calling the getString() method with a key to the list pref-
erence defined in Listing 11-1. Note that the second parameter to the getString() method
is the default value for the key preference. In this case, you pass null because you want null
returned if the preference does not exist in the preference store.

It goes without saying that you might need to access the actual preference controls
programmatically. For example, what if you need to provide the entries and entryValues
for the ListPreference at runtime? You can define and access preference controls similar to
the way you define and access controls in layout files and activities. For example, to access
the list preference defined in Listing 11-1, you would call the findPreference() method of
PreferenceActivity, passing the preference’s key (note the similarity to findViewById()).
You would then cast the control to ListPreference and then go about manipulating the con-
trol. For example, if you want to set the entries of the ListPreference, call the setEntries()
method, and so on.

So now you know how preferences work in Android. You know that Android provides
prebuilt UIs to show preferences and also takes care of persisting them. In addition, Android
provides the android.preference.PreferenceActivity class that you extend when implement-
ing preferences within your application. This class provides APIs for you to load preferences
and allows you to tie into and extend the preferences framework.

We showed you how to use the ListPreference view; now let’s examine the other
UI elements within the Android preferences framework. Namely, let’s talk about the
CheckBoxPreference view and the EditTextPreference view.

Understanding CheckBoxPreference
You saw that the ListPreference preference displays a list as its UI element. Similarly, the
CheckBoxPreference preference displays a check-box widget as its UI element.

To extend the flight-search example application, suppose you want to let the user set the
list of columns he wants to see with the result set. This preference displays the available col-
umns and allows the user to choose the desired columns by marking the corresponding check
boxes. The user interface for this example is shown in Figure 11-3 and the preferences XML file
is shown in Listing 11-3.

15967ch11.indd 367 6/5/09 11:15:57 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 11 ■ MaNaGING aND OrGaNIZ ING preFereNCeS368

Figure 11-3. The user interface for the check-box preference

Listing 11-3. Using a CheckBoxPreference

// chkbox.xml (store at res/xml/chkbox.xml)
<?xml version="1.0" encoding="utf-8"?>
 <PreferenceScreen
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:key="flight_columns_pref"
 android:title="Flight Search Preferences"
 android:summary="Set Columns for Search Results">
 <CheckBoxPreference
 android:key="show_airline_column_pref"
 android:title="Airline"
 android:summary="Show Airline column" />
 <CheckBoxPreference
 android:key="show_departure_column_pref"
 android:title="Departure"
 android:summary="Show Departure column" />
 <CheckBoxPreference
 android:key="show_arrival_column_pref"
 android:title="Arrival"
 android:summary="Show Arrival column" />
 <CheckBoxPreference
 android:key="show_total_travel_time_column_pref"
 android:title="Total Travel Time"
 android:summary="Show Total Travel Time column" />

15967ch11.indd 368 6/5/09 11:15:57 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 11 ■ MaNaGING aND OrGaNIZ ING preFereNCeS 369

 <CheckBoxPreference
 android:key="show_price_column_pref"
 android:title="Price"
 android:summary="Show Price column" />

</PreferenceScreen>

// CheckBoxPreferenceActivity.java

import android.os.Bundle;
import android.preference.PreferenceActivity;

public class CheckBoxPreferenceActivity extends PreferenceActivity
{
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 addPreferencesFromResource(R.xml.chkbox);
 }
}

Listing 11-3 shows the preferences XML file, chkbox.xml, and a simple activity class that
loads it using addPreferencesFromResource(). As you can see, the UI has five check boxes,
each of which is represented by a CheckBoxPreference node in the preferences XML file. Each
of the check boxes also has a key, which—as you would expect—is ultimately used to persist
the state of the UI element when it comes time to save the selected preference. Note that the
UI does not define an OK/Cancel button as you saw in the ListPreference example. With the
CheckBoxPreference, the state of the preference is saved when the user sets the state. In other
words, when the user checks or unchecks the preference control, its state is saved. Listing 11-4
shows the preference data store for this example.

Listing 11-4. The Preferences Data Store for the Check-Box Preference

<?xml version='1.0' encoding='utf-8' standalone='yes' ?>
<map>
 <boolean name="show_total_travel_time_column_pref" value="false" />
 <boolean name="show_price_column_pref" value="true" />
 <boolean name="show_arrival_column_pref" value="false" />
 <boolean name="show_airline_column_pref" value="true" />
 <boolean name="show_departure_column_pref" value="false" />
</map>

Again, you can see that each preference is saved through its key attribute. The data type
of the CheckBoxPreference is a boolean, which contains a value of either true or false: true to
indicate the preference is selected, and false to indicate otherwise. To read the value of one
of the check-box preferences, you would get access to the shared preference and then call the
getBoolean() method, passing the key of the preference.

Now let’s have a look at the EditTextPreference.

15967ch11.indd 369 6/5/09 11:15:57 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 11 ■ MaNaGING aND OrGaNIZ ING preFereNCeS370

Understanding EditTextPreference
The preferences framework also provides a free-form text preference called EditTextPreference.
This preference allows you to capture raw text rather than ask the user to make a selection. To
demonstrate this, let’s assume you have an application that generates Java code for the user.
One of the preference settings of this application might be the default package name to use for
the generated classes. So here, you want to display a text field to the user and allow her to set
the package name for the generated classes. Figure 11-4 shows the UI and Listing 11-5 shows
the XML.

Figure 11-4. Using the EditTextPreference

Listing 11-5. An Example of an EditTextPreference

// packagepref.xml
<?xml version="1.0" encoding="utf-8"?>
<PreferenceScreen
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:key="package_name_screen"
 android:title="Package Name"
 android:summary="Set package name">

 <EditTextPreference
 android:key="package_name_preference"
 android:title="Set Package Name"
 android:summary="Set the package name for generated code"
 android:dialogTitle="Package Name" />

</PreferenceScreen>

// EditTextPreferenceActivity.java

import android.os.Bundle;
import android.preference.PreferenceActivity;

15967ch11.indd 370 6/5/09 11:15:57 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 11 ■ MaNaGING aND OrGaNIZ ING preFereNCeS 371

public class EditTextPreferenceActivity extends PreferenceActivity{

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 addPreferencesFromResource(R.xml.packagepref);
 }

}

You can see that Listing 11-5 defines a PreferenceScreen with a single EditTextPreference
as a child. The generated UI for the listing features the PreferenceScreen on the left and the
EditTextPreference on the right (see Figure 11-4). When the user selects “Set Package Name,”
she is presented with a dialog to input the package name. When she clicks the OK button, the
preference is saved to the preference store.

As with the other preferences, you can obtain the EditTextPreference from your activity
class by using the preference’s key. Once you have the EditTextPreference, you can manipulate
the actual EditText by calling getEditText()—if, for example, you want to apply validation,
preprocessing, or postprocessing on the value that the user types in the text field.

Now let’s look at the preferences framework’s RingtonePreference.

Understanding RingtonePreference
RingtonePreference deals specifically with ringtones. You’d use it in an application that
gives the user an option to select a ringtone as a preference. Figure 11-5 shows the UI of the
RingtonePreference example and Listing 11-6 shows the XML.

Figure 11-5. The RingtonePreference example UI

15967ch11.indd 371 6/5/09 11:15:57 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 11 ■ MaNaGING aND OrGaNIZ ING preFereNCeS372

Listing 11-6. Defining a RingtonePreference Preference

// ringtone.xml (store at res/xml/ringtone.xml)
<?xml version="1.0" encoding="utf-8"?>
<PreferenceScreen
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:key="flight_option_preference"
 android:title="My Preferences"
 android:summary="Set Flight Option Preferences">
 <RingtonePreference
 android:key="ring_tone_pref"
 android:title="Set Ringtone Preference"
 android:showSilent="true"
 android:ringtoneType="alarm"
 android:summary="Set Ringtone" />
</PreferenceScreen>

// RingtonePreferenceActivity.java

import android.os.Bundle;
import android.preference.PreferenceActivity;

public class RingtonePreferenceActivity extends PreferenceActivity
{
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 addPreferencesFromResource(R.xml.ringtone);
 }
}

When the user selects “Set Ringtone Preference,” the preferences framework displays a
ListPreference containing the ringtones on the device (see Figure 11-5). The user can then
select a ringtone and then choose OK or Cancel. If he clicks OK, the selection is persisted to the
preference store. Note that with the ringtones, the value stored in the preference store is the
URI of the selected ringtone—unless he selects “Silent,” in which case the stored value is an
empty string. An example URI looks like this:

<string name="ring_tone_pref">content://media/internal/audio/media/26</string>

Finally, the RingtonePreference shown in Listing 11-6 follows the same pattern as the
other preferences you’ve defined thus far. The difference here is that you set a few different
attributes, including showSilent and ringtoneType. You can use showSilent to include the
silent ringtone in the ringtone list, and ringtoneType to restrict the types of ringtones displayed
in the list. Possible values for this property include ringtone, notification, alarm, and all.

15967ch11.indd 372 6/5/09 11:15:57 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 11 ■ MaNaGING aND OrGaNIZ ING preFereNCeS 373

Organizing Preferences
The preferences framework provides some support for you to organize your preferences into
categories. If you have a lot of preferences, for example, you can build a view that shows high-
level categories of preferences. Users could then drill down into each category to view and
manage preferences specific to that group.

You can implement something like this in one of two ways. You can introduce nested
PreferenceScreen elements within the root PreferenceScreen, or you can use PreferenceCategory
elements to get a similar result. Figure 11-6 and Listing 11-7 show how to implement the first
technique: grouping preferences by using nested PreferenceScreen elements.

Figure 11-6. Creating groups of preferences by nesting PreferenceScreen elements

The view on the left of Figure 11-6 displays two preference screens, one with the title
“Meats” and the other with the title “Vegetables.” Clicking a group takes you to the preferences
within that group. Listing 11-7 shows how to create nested screens.

Listing 11-7. Nesting PreferenceScreen Elements to Organize Preferences

<?xml version="1.0" encoding="utf-8"?>
<PreferenceScreen
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:key="using_categories_in_root_screen"
 android:title="Categories"
 android:summary="Using Preference Categories">

 <PreferenceScreen
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:key="meats_screen"
 android:title="Meats"
 android:summary="Preferences related to Meats">

15967ch11.indd 373 6/5/09 11:15:57 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 11 ■ MaNaGING aND OrGaNIZ ING preFereNCeS374

 <CheckBoxPreference
 android:key="fish_selection_pref"
 android:title="Fish"
 android:summary="Fish is great for the healthy" />
 <CheckBoxPreference
 android:key="chicken_selection_pref"
 android:title="Chicken"
 android:summary="A common type of poultry" />
 <CheckBoxPreference
 android:key="lamb_selection_pref"
 android:title="Lamb"
 android:summary="Lamb is a young sheep" />

 </PreferenceScreen>
 <PreferenceScreen
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:key="vegi_screen"
 android:title="Vegetables"
 android:summary="Preferences related to vegetable">
 <CheckBoxPreference
 android:key="tomato_selection_pref"
 android:title="Tomato "
 android:summary="It's actually a fruit" />
 <CheckBoxPreference
 android:key="potato_selection_pref"
 android:title="Potato"
 android:summary="My favorite vegetable" />

 </PreferenceScreen>

</PreferenceScreen>

You create the groups in Figure 11-6 by nesting PreferenceScreen elements within the
root PreferenceScreen. Organizing preferences this way is useful if you have a lot of prefer-
ences and you’re concerned about having the user scroll to find the preference he is looking
for. If you don’t have a lot of preferences but still want to provide high-level categories for your
preferences, you can use PreferenceCategory, which is the second technique we mentioned.
Figure 11-7 and Listing 11-8 show the details.

15967ch11.indd 374 6/5/09 11:15:57 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 11 ■ MaNaGING aND OrGaNIZ ING preFereNCeS 375

Figure 11-7. Using PreferenceCategory to organize preferences

Figure 11-7 shows the same groups we used in our previous example, but now organized
with preference categories. The only difference between the XML in Listing 11-8 and the XML
in Listing 11-7 is that you create a PreferenceCategory for the nested screens rather than nest
PreferenceScreen elements.

Listing 11-8. Creating Categories of Preferences

<?xml version="1.0" encoding="utf-8"?>
<PreferenceScreen
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:key="using_categories_in_root_screen"
 android:title="Categories"
 android:summary="Using Preference Categories">

 <PreferenceCategory
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:key="meats_category"
 android:title="Meats"
 android:summary="Preferences related to Meats">

 <CheckBoxPreference
 android:key="fish_selection_pref"
 android:title="Fish"
 android:summary="Fish is great for the healthy" />

15967ch11.indd 375 6/5/09 11:15:57 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 11 ■ MaNaGING aND OrGaNIZ ING preFereNCeS376

 <CheckBoxPreference
 android:key="chicken_selection_pref"
 android:title="Chicken"
 android:summary="A common type of poultry" />
 <CheckBoxPreference
 android:key="lamb_selection_pref"
 android:title="Lamb"
 android:summary="Lamb is a young sheep" />

 </PreferenceCategory>
 <PreferenceCategory
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:key="vegi_category"
 android:title="Vegetables"
 android:summary="Preferences related to vegetable">
 <CheckBoxPreference
 android:key="tomato_selection_pref"
 android:title="Tomato "
 android:summary="It's actually a fruit" />
 <CheckBoxPreference
 android:key="potato_selection_pref"
 android:title="Potato"
 android:summary="My favorite vegetable" />

 </PreferenceCategory>

</PreferenceScreen>

Summary
In this chapter, we talked about managing preferences in Android. We showed you how to use
ListPreference, CheckBoxPreference, EditTextPreference, and RingtonePreference. We also
talked about programmatically manipulating preferences and then showed you how to orga-
nize preferences into groups.

15967ch11.indd 376 6/5/09 11:15:57 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

C h a p t e r 1 2

Coming to Grips with 1.5

With the release of Android 1.5, developers now have more functionality at their finger-
tips. In the next two chapters, we will introduce you to some of the new features in Android
1.5 and provide you with instructions to set up your development environment for the new
release. Specifically, we will show you some additions to the media APIs and introduce you to
Android’s speech-recognition framework. We will also briefly demonstrate Android’s input-
method framework.

We will start by showing you how to download and install the Android 1.5 SDK and the
new ADT plug-in. Note that the instructions you’ll find here will not be as detailed as the ones
in Chapter 2, so you might want to quickly review the ADT installation instructions there
before continuing.

To start building Android applications for the 1.5 runtime, you’ll need to download the 1.5
SDK. Point your browser to the Android 1.5 download site (http://developer.android.com/
sdk/1.5_r1/index.html) and download the SDK zip file for Windows to c:\Android1.5ZIP\.
After the download completes, unzip the file to c:\Android1.5_SDK\.

Now that you have the SDK, let’s move on: you’ll download the new ADT plug-in and con-
figure Eclipse for 1.5 development.

Installing the ADT Plug-in for Android 1.5
Development
The examples throughout the book have used Eclipse 3.4 (Ganymede), and you’ll want to
ensure that you use this version when developing for Android 1.5. If you have installed an
older version of the ADT plug-in (0.8 or lower), you’ll need to uninstall that prior to installing
the new ADT plug-in. To do that, launch the Eclipse IDE, select the Help menu item, and then
choose the Software Updates… option. In the “Software Updates and Add-ons” window, select
the “Installed Software” tab. To remove the previous version of ADT, you’ll need to uninstall
Android Development Tools and Android Editors. Uninstalling is easy: select an item from the
list and click the Uninstall button. The IDE will run a process in the background and then ask
you to confirm that you want to uninstall the selected item (see Figure 12-1).

377

15967ch12.indd 377 6/5/09 11:15:45 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 12 ■ COMING tO GrIpS WIth 1 .5378

Figure 12-1. The “Uninstall” window in Eclipse

Click the Finish button to have the IDE remove the selected feature. After uninstalling an
item, Eclipse will display a window recommending that you restart the IDE (see Figure 12-2).
But in this case, don’t restart Eclipse until you have uninstalled both the Android Develop-
ment Tools and the Android Editors.

Figure 12-2. After you uninstall a feature, you are prompted to restart the system.

Now you are ready to install the new ADT features. You can install ADT by pointing
Eclipse to the download site, as you did in Chapter 2, or you can download the ADT archive
to your local workstation and then point Eclipse to the archive. Let’s do the latter. Download
version 0.9.1 of the ADT plug-in from http://developer.android.com/sdk/adt_download.html.
Store the .zip file at c:\ADTPluginFor1.5.

To install it, launch Eclipse, go to Help ➤ Software Updates…, and then select the “Avail-
able Software” tab. In the “Available Software” tab, click the Add Site button and then the
Archive button. Eclipse will display the “Repository archive” window, from which you’ll need

15967ch12.indd 378 6/5/09 11:15:45 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 12 ■ COMING tO GrIpS WIth 1 .5 379

to select the ADT archive (which you downloaded to c:\ADTPluginFor1.5). After you select the
.zip file, you’ll be taken back to the “Add Site” window. Click OK. Eclipse will now load a new
entry in the “Available Software” tab showing the new ADT version in the list of available soft-
ware. Select the new ADT .jar file from the list, and make sure the items below the .jar file are
also selected (see Figure 12-3). Then click the Install button.

Figure 12-3. Adding the new ADT plug-in to the list of available add-ons

Eclipse will then begin downloading the features from the Web, and after a minute or so,
you’ll be presented with a window to confirm that you want to install the features. Click the
Next button to confirm and then accept the terms and license agreements that follow. Click
the Finish button to have Eclipse install the new features. The install will take a minute, and
then you’ll be asked to restart the system. Click the Yes button when prompted to restart.

Before you can begin building applications with the Android 1.5 SDK, you’ll need to point
Eclipse to the path of the new SDK. Select Window ➤ Preferences ➤ Android. In the Android
preferences window, set the SDK location path to c:\Android1.5_SDK and then click OK.

Getting Started with Android 1.5
Now you are ready to begin building Android 1.5 applications. Let’s quickly create a new
Android application to test the new SDK. Select File ➤ New ➤ Project ➤ Android. In the “New
Android Project” window (see Figure 12-4), set the project name to HelloAndroid1.5, the appli-
cation name to Hello Android, and the package name to com.syh. Mark the “Create Activity”
check box and set the activity name to MainActivity. You’ll notice the new “Target” portion of

15967ch12.indd 379 6/5/09 11:15:45 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 12 ■ COMING tO GrIpS WIth 1 .5380

the screen that lets you choose between Android SDK versions. Set the SDK Target to Android
1.5. You can also specify a “Min SDK Version,” which is the minimum required Android run-
time that your application needs. Leave this setting at its default value of 3. Now click Finish.

Figure 12-4. The “New Android Project” window

When you select Android 1.5 as the target SDK, the Min SDK Version is defaulted to 3, and
when you select Android 1.1, the Min SDK Version is defaulted to 2. For now, you’ll want to
leave the Min SDK Version at 3 when writing Android 1.5 applications unless you have a good
reason to specify that your application can run on a device that is running Android 1.1.

Also realize that selecting the Google APIs in the SDK Target list will include mapping
functionality in your application, while selecting Android 1.5 will not. In the previous ver-
sions of the SDK, the mapping classes were included with android.jar, but they’ve since been
moved to a separate .jar file called maps.jar. When you select Google APIs, your Min SDK
Version is defaulted to 3 (for Android 1.5) and the ADT plug-in will include the maps.jar file
in your project. In other words, if you are building an application that is using the mapping-
related classes, you’ll want to set your SDK Target to Google APIs. Note that you still need to
add the maps uses-library (<uses-library android:name="com.google.android.maps" />)
entry to your AndroidManifest.xml file.

One of the first things you’ll notice when you create a new application is a few changes to
the project structure, as shown in Figure 12-5.

15967ch12.indd 380 6/5/09 11:15:45 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 12 ■ COMING tO GrIpS WIth 1 .5 381

Figure 12-5. Project structure of the HelloAndroid1.5 application

As shown in Figure 12-5, the R.java file now resides under the gen folder, and you now have
a default.properties file at the root of the project. You are very familiar with R.java, but you
should know that the ADT plug-in auto-generates the default.properties file, which you need
not modify. Also know that the gen folder is meant to contain code generated by the ADT plug-in.
This means, for example, that the AIDL-based Java interfaces would also go into the gen folder.

One of the additions to the ADT plug-in is that you now have a wizard that helps you gener-
ate resource files quickly. Let’s try this feature by creating a new layout file. In Eclipse, select File
➤ New ➤ Other. In the “New” dialog box, select Android ➤ Android XML File (see Figure 12-6).

Figure 12-6. The “New” item window

15967ch12.indd 381 6/5/09 11:15:45 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 12 ■ COMING tO GrIpS WIth 1 .5382

Alternatively, you can select the green icon with the “+” sign from the toolbar. Either way,
you should see the “New Android XML File” window (see Figure 12-7).

Figure 12-7. The new resource wizard

As you can see, the wizard helps you create resource files (such as layouts and strings),
menus, preferences, animations, and so on. Moreover, you can customize the generated files
by selecting qualifiers specific to the type of resource that you are creating. For example, to
create a layout file with a LinearLayout as the root element, you would first set the type of
resource to Layout by selecting the corresponding radio button. Then select Orientation from
the list of Available Qualifiers and move that to the list of Chosen Qualifiers (by selecting the
right-facing arrow). You would then select Portrait from the Screen Orientation drop-down
and LinearLayout from the root-element drop-down. To generate the file, you would click the
Finish button at the bottom of the “New Android XML File” window.

15967ch12.indd 382 6/5/09 11:15:45 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 12 ■ COMING tO GrIpS WIth 1 .5 383

Creating an Android Virtual Device
To run an application in the emulator requires a bit of setup with the new ADT plug-in.
Specifically, before you can run an application in the emulator, you’ll have to create at least
one Android Virtual Device (AVD). An AVD represents a device configuration. For example,
you could have an AVD representing an Android device running version 1.5 of the SDK with a
32MB SD card. The idea is that you create AVDs you are going to support and then point the
emulator to one of those AVDs when developing and testing your application. As you’ll see
shortly, specifying (and changing) which AVD to use is very easy and makes testing with vari-
ous configurations a snap. Note that the current version (0.9.1) of the ADT plug-in does not
provide a UI for you to create an AVD, so you’ll have to create it using the command line.

To create an AVD, you’ll use a batch file named android.bat under the tools directory
(c:\Android1.5_SDK\tools\). android.bat allows you to create a new AVD and manage exist-
ing AVDs. For example, you can view existing AVDs, move AVDs, and so on. You can see the
options available for using android.bat by running android –help. For now, let’s just create an
AVD. The first step is to create a folder where the AVD image will be stored, so create a folder at
c:\avd\. The next step is to run the android.bat file to create the AVD:

android create avd -n DefaultAVD -t 2 -c 32M -p C:\AVD\DefaultAVD\

The parameters passed to the batch file are listed in Table 12-1.

Table 12-1. Parameters Passed to the android.bat Tool

Argument/Command Description

create avd Tells the tool to create an AVD.

n The name of the AVD.

t The target runtime. Use 1 to specify Android 1.1 and 2 to specify
Android 1.5.

c Size of the SD card.

p The path to the generated AVD.

Executing the preceding command will generate an AVD; you should see output similar to
what’s shown in Figure 12-8. Note that when you run the create avd command, you are asked
if you want to create a custom hardware profile. Answer “no” to this question for now.

Figure 12-8. Creating an AVD yields this android.bat output.

15967ch12.indd 383 6/5/09 11:15:45 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 12 ■ COMING tO GrIpS WIth 1 .5384

With that, you have what you need to run an Android application in an emulator. Go back
to Eclipse now so you can run the example application you created earlier. Select the Run
menu, followed by the Run Configurations… option. In the “Run Configurations” window,
select Android Application ➤ HelloAndroid1.5 on the left side of the screen. Leave the defaults
in the “Android” tab and then choose the “Target” tab. As shown in Figure 12-9, you can now
select the AVD you want to use. Because we only have one AVD, set the “Device Target Selec-
tion Mode” to Automatic and then choose DefaultAVD from the list of AVDs. To the run the
application in the emulator, click the Run button.

Figure 12-9. Setting the preferred AVD for the emulator

Now you are ready to begin developing with the Android 1.5 SDK. In the sections that fol-
low, we are going to introduce some of the new functionality that is packaged with Android
1.5. We will begin by showing you how to use the new video-capture functionality.

Exploring Improvements to the Media Framework
Android 1.5 has some exciting changes to the media APIs. In this section, we are going to show
you how to use the MediaRecorder class to implement video capture. We are also going to
introduce you to the MediaStore class, and then show you how to scan an Android device for
media content. Let’s start with video capture.

15967ch12.indd 384 6/5/09 11:15:45 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 12 ■ COMING tO GrIpS WIth 1 .5 385

Using the MediaRecorder Class for Video Capture
If you recall from Chapter 9, video recording was not possible with older versions of the SDK.
With 1.5, you can begin to capture video using the media framework. Listing 12-1 demon-
strates this. Note that we assume that you have read Chapter 9 and understand how to use the
APIs from the media framework. If you have not read Chapter 9, you should do so before con-
tinuing with this section. Also realize that Listing 12-1 will not work on an emulator because
video recording requires a hardware-encoder module, which is not available with version 1.5
of the SDK. Therefore, you’ll have to deploy to a real device to test Listing 12-1.

Listing 12-1. Using the MediaRecorder Class to Capture Video

import android.app.Activity;
import android.media.MediaRecorder;
import android.os.Bundle;

public class MainActivity extends Activity {
 private MediaRecorder recorder;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 }

 private void recordVideo() throws Exception {
 if(recorder!=null)
 {
 recorder.stop();
 recorder.release();
 }
 recorder = new MediaRecorder();
 recorder.setVideoSource(MediaRecorder.VideoSource.CAMERA);
 recorder.setAudioSource(MediaRecorder.AudioSource.MIC);
 recorder.setOutputFormat(MediaRecorder.OutputFormat.THREE_GPP);
 recorder.setVideoSize(176, 144);
 recorder.setVideoFrameRate(30);
 recorder.setVideoEncoder(MediaRecorder.VideoEncoder. MPEG_4_SP);
 recorder.setAudioEncoder(MediaRecorder.AudioEncoder.AMR_NB);
 recorder.setOutputFile("/sdcard/output.3gpp");
 recorder.prepare();
 recorder.start();
 }
}

15967ch12.indd 385 6/5/09 11:15:46 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 12 ■ COMING tO GrIpS WIth 1 .5386

Listing 12-1 shows an activity class that provides a method to record video content from
the device’s camera to the SD card. Recall from Chapter 9 that the MediaRecorder requires you
to set the recorder properties before calling prepare(). As shown, we set the MediaRecorder’s
video source to the device’s camera, the audio source to the microphone, the output format to
3GPP, and so on. We also set the audio and video encoders and a path to the output file on the
SD card before calling the prepare() and start() methods.

Listing 12-1 will capture video content from the camera and output it to the SD card in a
file named output.3gpp. As you can see, video recording is fairly easy, as is the audio record-
ing that we showed you in Chapter 9. Note that currently you cannot manipulate the content
from the camera before encoding and saving it—you’ll have to wait for that, possibly in a
later release.

Another notable media-related upgrade is in the android.provider.MediaStore class. Let’s
explore this class next.

Exploring the MediaStore Class
The MediaStore class provides an interface to the media that is stored on the device (in both
internal and external storage). MediaStore also provides APIs for you to act on the media.
These include mechanisms for you to search the device for specific types of media, intents for
you to record audio and video to the store, ways for you to establish playlists, and more. Note
that this class was part of the older SDKs, but it has been greatly improved with the 1.5 release.

Because this class supports intents for you to record audio and video, and the
MediaRecorder class does also, an obvious question is, when do you use MediaStore vs.
MediaRecorder? As you saw with the preceding video-capture example and with the audio-
recording examples in Chapter 9, MediaRecorder allows you to set various options on the
source of the recording. These options include the audio/video input source, video frame
rate, video frame size, output formats, and so on. MediaStore does not provide this level
of granularity, but you are not coupled directly to the MediaRecorder if you go through the
MediaStore’s intents. More important, content created with the MediaRecorder is not avail-
able to other applications that are looking at the media store. If you use MediaRecorder,
you’ll want to add the recording to the media store using the MediaStore APIs. To that end,
let’s see how we can leverage the MediaStore APIs.

If you recall from Chapter 9, recording audio was easy, but it gets much easier if you
use an intent from the MediaStore. Listing 12-2 demonstrates how to use an intent to record
audio.

Listing 12-2. Using an Intent to Record Audio

import android.app.Activity;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;

15967ch12.indd 386 6/5/09 11:15:46 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 12 ■ COMING tO GrIpS WIth 1 .5 387

public class UsingMediaStoreActivity extends Activity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.record_audio);

 Button btn = (Button)findViewById(R.id.recordBtn);
 btn.setOnClickListener(new OnClickListener(){

 @Override
 public void onClick(View view) {

 startRecording();

 }});
 }

 public void startRecording() {
 Intent intt = new Intent("android.provider.MediaStore.RECORD_SOUND");
 startActivityForResult(intt, 0);
 }

 @Override
 protected void onActivityResult(int requestCode, int resultCode, Intent data) {

 switch (requestCode) {
 case 0:
 if (resultCode == RESULT_OK) {
 Uri recordedAudioPath = data.getData();
 int i=0;
 }
 }
 }
}
// record_audio.xml layout file
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <Button android:id="@+id/btn"
 android:text="Record Audio"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

</LinearLayout>

15967ch12.indd 387 6/5/09 11:15:46 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 12 ■ COMING tO GrIpS WIth 1 .5388

Listing 12-2 creates an intent requesting the system to begin recording audio. The code
launches the intent against an activity by calling startActivityForResult(), passing the intent
and the requestCode. When the requested activity completes, onActivityResult() is called
with the requestCode. As shown in onActivityResult(), we look for a requestCode that matches
the code that was passed to startActivityForResult() and then retrieve the URI of the saved
media by calling data.getUri(). You could then feed the URI to an intent to listen to the
recording if you wanted to. The UI for Listing 12-2 is shown in Figure 12-10.

Figure 12-10. Built-in audio recorder before and after a recording

Figure 12-10 contains two screenshots. The image on the left displays the audio recorder
before the recording has started, and the image on the right shows the activity UI after the
recording has been stopped.

Similar to the way it provides an intent for audio recording, the MediaStore also provides
an intent for you to take a picture. Listing 12-3 demonstrates this.

Listing 12-3. Launching an Intent to Take a Picture

import android.app.Activity;
import android.content.Intent;

import android.os.Bundle;
import android.provider.MediaStore;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;

15967ch12.indd 388 6/5/09 11:15:46 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 12 ■ COMING tO GrIpS WIth 1 .5 389

public class MainActivity extends Activity {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 Button btn = (Button)findViewById(R.id.btn);

 btn.setOnClickListener(new OnClickListener(){

 @Override
 public void onClick(View view)
 {
 captureImage();
 }});

 }
 private void captureImage()
 {
 Intent intt = new Intent(MediaStore.ACTION_IMAGE_CAPTURE);
 startActivityForResult(intt, 0);

 }
 @Override
 protected void onActivityResult(int requestCode, int resultCode, Intent data) {
 if(requestCode==0 && resultCode==Activity.RESULT_OK)
 {
 Intent inn = new Intent(Intent.ACTION_VIEW);
 inn.setData(data.getData());
 startActivity(inn);
 }
 super.onActivityResult(requestCode, resultCode, data);
 }

}

// main.xml layout file
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >

15967ch12.indd 389 6/5/09 11:15:46 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 12 ■ COMING tO GrIpS WIth 1 .5390

 <Button android:id="@+id/btn"
 android:text="Take Picture"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

</LinearLayout>

The activity class shown in Listing 12-3 defines the captureImage() method. In this
method, an intent is created where the action name of the intent is set to MediaStore.ACTION_
IMAGE_CAPTURE. When this intent is launched, the camera application is brought to the fore-
ground and the user takes a picture. After the picture is taken, onActivityResult() is called
with an intent that holds the URI of the picture. In Listing 12-3, we create another intent with
the URI of the photo and start an activity to view the picture.

Now that was easy. MediaStore also has a video-capture intent that behaves similarly.
You can use MediaStore.ACTION_VIDEO_CAPTURE to capture video.

Scanning the Media Store for Media Content
One of the other features provided by Android’s media framework is the ability to search the
media store for media content via the MediaScannerConnection class. Let’s see how this works
(see Listing 12-4).

Listing 12-4. Scanning the SD Card for Media

import android.app.Activity;
import android.content.Intent;
import android.media.MediaScannerConnection;
import android.media.MediaScannerConnection.MediaScannerConnectionClient;
import android.net.Uri;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;

public class MediaScannerActivity extends Activity implements ➥

MediaScannerConnectionClient
{
 private static final String SCAN_PATH = "/sdcard/";
 private static final String FILE_TYPE = "image/jpeg";

 private MediaScannerConnection conn;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.scan);

 Button scanBtn = (Button)findViewById(R.id.scanBtn);

15967ch12.indd 390 6/5/09 11:15:46 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 12 ■ COMING tO GrIpS WIth 1 .5 391

 scanBtn.setOnClickListener(new OnClickListener(){

 @Override
 public void onClick(View view)
 {
 startScan();
 }});
 }

 private void startScan()
 {
 if(conn!=null)
 {
 conn.disconnect();
 }

 conn = new MediaScannerConnection(this,this);
 conn.connect();

 }

 @Override
 public void onMediaScannerConnected() {
 conn.scanFile(SCAN_PATH, FILE_TYPE);
 }

 @Override
 public void onScanCompleted(String path, Uri uri) {
 try {
 if (uri != null) {
 Intent intent = new Intent(Intent.ACTION_VIEW);
 intent.setData(uri);
 startActivity(intent);
 }
 } finally {
 conn.disconnect();
 conn = null;
 }
 }
}

// scan.xml layout file
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content">

15967ch12.indd 391 6/5/09 11:15:46 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 12 ■ COMING tO GrIpS WIth 1 .5392

 <Button android:id="@+id/scanBtn"
 android:text="Scan for Photos"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />
</LinearLayout>

Listing 12-4 shows an activity class that scans the device’s SD card for JPEGs. After the
search, the results are displayed to the user via an intent.

Now let’s move on to something different. In the next section, we are going to introduce
you to Android’s voice-recognition framework.

Exploring Voice Recognition
Android 1.5 includes a voice-recognition framework, and one of its popular toys is the
RecognizerIntent class. The activity class in Listing 12-5 demonstrates this intent.

Listing 12-5. Using the RecognizerIntent

import java.util.List;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.speech.RecognizerIntent;
import android.util.Log;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;

public class RecognizeSpeechActivity extends Activity
{
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 Button btn = (Button)findViewById(R.id.btn);

 btn.setOnClickListener(new OnClickListener(){

 @Override
 public void onClick(View v)
 {
 startVoiceRecognition();
 }});
 }

15967ch12.indd 392 6/5/09 11:15:46 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 12 ■ COMING tO GrIpS WIth 1 .5 393

 public void startVoiceRecognition()
 {
 Intent intent = new Intent(RecognizerIntent.ACTION_RECOGNIZE_SPEECH);
 startActivityForResult(intent, 0);
 }
 @Override
 protected void onActivityResult(int requestCode, int resultCode, Intent data) {
 super.onActivityResult(requestCode, resultCode, data);

 if(requestCode==0 && resultCode == Activity.RESULT_OK)
 {
 List<String> text = data.getStringArrayListExtra(➥

RecognizerIntent.EXTRA_RESULTS);
 // do something with the result

 }
 }
}

// main.xml layout file
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <Button android:id="@+id/btn"
 android:text="Speech Recognition"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

</LinearLayout>

Listing 12-5 displays a button in the UI that is meant to trigger the launching of the intent.
In the click-handler method, the startVoiceRecognition() method is called. This method cre-
ates an intent with the action RecognizerIntent.ACTION_RECOGNIZE_SPEECH and then passes
that to startActivityForResult(). This launches the speech-recognition activity, which
prompts the user for speech. After the user submits speech data, the speech-recognition activ-
ity passes the data through a speech-recognizer component. The result of the activity is sent to
the onActivityResult method, as shown.

That’s obviously a lot of functionality for very little coding. It gets better. The framework
also contains an intent action that executes a web search based on the result of the speech rec-
ognizer and displays the findings. Very powerful. You can try this by setting the intent action to

RecognizerIntent.ACTION_WEB_SEARCH

Note that because the preceding action will need to go to the Internet, you will need to
add the Internet permission (<uses-permission android:name="android.permission.
INTERNET"/>) to your AndroidManifest.xml file.

Now let’s move on and discuss the input-method framework.

15967ch12.indd 393 6/5/09 11:15:46 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 12 ■ COMING tO GrIpS WIth 1 .5394

Introducing the Input-Method Framework
An exciting feature delivered with Android 1.5 is an input-method framework (IMF) imple-
mentation. IMF is actually a Java specification that decouples, for example, a text field from
the mechanism that delivers text to the component. Example uses of an IMF include interpret-
ers that translate speech into text, translators that convert text written with a pen device into
regular text, interpreters that map characters from the Western alphabet table to characters
in various east Asian languages (such as Korean and Japanese), and so on. One of the rea-
sons for implementing an input-method framework in Android is to support phones that will
ultimately be used in non-English-speaking countries, particularly Korea, China, and Japan.
There are other obvious reasons, too. For example, you need an IMF implementation to sup-
port voice dialing, soft keyboards, and so on.

The 1.5 SDK actually has several input-method editors and engines. If you are interested
in this specialized framework, have a look at the InputMethodService class to get started.

Summary
In this chapter, we introduced you to Android 1.5. We began by showing how to download
and install the new SDK along with the associated ADT plug-in. We then showed you some of
the new features in the Android 1.5 SDK. Specifically, we talked about video capture and other
media-related intents. We also discussed the MediaStore class and showed you how to scan
your device for media. We then explored the speech-recognition engine and concluded with a
brief introduction to the input-method framework.

In the next chapter, we are going to discuss changes to the OpenGL APIs and show you
how to create live folders, which allow developers to expose content providers on a device’s
home page.

15967ch12.indd 394 6/5/09 11:15:46 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

C h a p t e r 1 3

Simplifying OpenGL and
exploring Live Folders

In this chapter, we will primarily talk about simplifying OpenGL and introduce a new con-
cept called live folders that has attracted a lot of recent attention within the Android developer
community. You will need the Android 1.5 SDK to take advantage of the material covered in
this chapter. As this is the last chapter of the book, we will also briefly look at the future pros-
pects for the Android OS and how the evolving SDK releases will contribute to that future.

As we pointed out in Chapter 10, the Android SDK needs a simplified framework for
beginning OpenGL programmers, and we introduced one such framework loosely based on
Android 1.1 samples. In release 1.5, the Android team recognized this need as well, and sub-
sequently introduced a similar framework to hide the OpenGL setup. In the first section of
this chapter, we will talk about this framework and introduce you to the set of new OpenGL
classes. We will then reimplement the simple triangle-drawing example introduced in Chapter
10 using these new 1.5 SDK classes.

After that, we’ll delve into live folders, an important concept introduced in Android 1.5.
Live folders allow developers to expose content providers such as contacts, notes, and media
on the device’s default opening screen (which we will refer to as the device’s “home page”).
When a content provider such as Android’s contacts content provider is exposed as a live
folder on the home page, this live folder will be able to refresh itself as contacts are added,
deleted, or modified in the contacts database. We will explain what these live folders are, how
to implement them, and how to make them “live.”

In the last section of this chapter, we will explore how the Android OS is set to power the
next generation of PCs—not only smartphones, but also netbooks and other Internet-enabled
devices that are capable of general-purpose computing.

Let us now take a detailed look at the improved OpenGL capabilities in the Android 1.5 SDK.

395

15967ch13.indd 395 6/5/09 11:15:32 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 13 ■ S IMpLIFY ING OpeNGL aND eXpLOrING L IVe FOLDerS396

Simplifying OpenGL
The OpenGL-related changes in the Android 1.5 SDK are primarily aimed at providing a sim-
plified interface to the OpenGL drawing capabilities. This simplification will make OpenGL
a lot more approachable to beginning OpenGL programmers. We discussed this need in
Chapter 10, and to address it, we designed an OpenGL test harness that exhibits the following
characteristics:

	 •	 Hide	how	one	needs	to	initialize	and	get	an	EGLContext

	 •	 Hide	the	complexities	of	drawing	on	a	SurfaceView using a secondary thread

	 •	 Expose	only	the	interfaces	that	are	dedicated	to	the	core	OpenGL	drawing	APIs

In that framework, you only needed to worry about inheriting from an AbstractRenderer
to start drawing. The changes in the 1.5 SDK follow a similar pattern, introducing these key
new classes and interfaces into the android.opengl package:

	 •	 GLSurfaceView: This class is responsible for drawing on a surface view using a second-
ary thread. It’s equivalent to the OpenGLTestHarness and GLThread classes covered in
Chapter 10.

	 •	 GLSurfaceView.Renderer: This is an interface that defines a contract for the inheriting
drawing classes. All rendering subclasses need to implement this interface.

With these classes and interfaces, you should use OpenGL like this:

 1. Implement the Renderer interface and provide the necessary OpenGL setup such as the
OpenGL camera. Then override the onDraw method to draw.

 2. Instantiate a GLSurfaceView and associate it with the subclassed Renderer from step 1.

 3. Set the GLSurfaceView object in the activity.

You should familiarize yourself with the Renderer interface (see Listing 13-1) because it’s
the primary contract that developers will use to implement their drawing code.

Listing 13-1. The 1.5 SDK Renderer Interface

public static interface GLSurfaceView.Renderer
{
 void onDrawFrame(GL10 gl);
 void onSuraceChanged(GL10 gl, int width, int height);
 void onSurfaceCreated(GL10 gl, EGLConfig config);
}

As you might have noticed, this renderer resembles the Renderer interface that we
introduced in Chapter 10 (see Listing 10-10). The methods in both interfaces have similar
responsibilities, so we won’t explain what each method does.

By further following the test harness in Chapter 10, we can gain even more simplicity by
having all our renderers inherit from an AbstractRenderer. This would let us factor out the code
that is common to all renderers and place it in the AbstractRenderer. Let us implement this
AbstractRenderer using the new standardized 1.5 SDK Renderer interface (see Listing 13-2).

15967ch13.indd 396 6/5/09 11:15:32 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 13 ■ S IMpLIFY ING OpeNGL aND eXpLOrING L IVe FOLDerS 397

Listing 13-2. AbstractRenderer Source Code

//filename: AbstractRenderer.java
public abstract class AbstractRenderer
implements GLSurfaceView.Renderer
{
 public int[] getConfigSpec() {
 int[] configSpec = {
 EGL10.EGL_DEPTH_SIZE, 0,
 EGL10.EGL_NONE
 };
 return configSpec;
 }

 public void onSurfaceCreated(GL10 gl, EGLConfig eglConfig) {
 gl.glDisable(GL10.GL_DITHER);
 gl.glHint(GL10.GL_PERSPECTIVE_CORRECTION_HINT,
 GL10.GL_FASTEST);
 gl.glClearColor(.5f, .5f, .5f, 1);
 gl.glShadeModel(GL10.GL_SMOOTH);
 gl.glEnable(GL10.GL_DEPTH_TEST);
 }

 public void onSurfaceChanged(GL10 gl, int w, int h) {
 gl.glViewport(0, 0, w, h);
 float ratio = (float) w / h;
 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();
 gl.glFrustumf(-ratio, ratio, -1, 1, 3, 7);
 }

 public void onDrawFrame(GL10 gl)
 {
 gl.glDisable(GL10.GL_DITHER);
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 GLU.gluLookAt(gl, 0, 0, -5, 0f, 0f, 0f, 0f, 1.0f, 0.0f);
 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
 draw(gl);
 }
 protected abstract void draw(GL10 gl);
}

As you can see, the AbstractRenderer in Listing 13-2 takes care of the settings for an
OpenGL scene (see the Chapter 10 discussion about setting up the OpenGL camera).

15967ch13.indd 397 6/5/09 11:15:32 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 13 ■ S IMpLIFY ING OpeNGL aND eXpLOrING L IVe FOLDerS398

We are now in a good position to show you how to use these 1.5 OpenGL classes with the
AbstractRenderer effectively. We will first implement a simple drawing class by bringing over
the SimpleTriangleRenderer class that we introduced in Chapter 10. This will demonstrate the
simple inheritance required to start drawing in OpenGL. We will also introduce a simple activ-
ity to test this SimpleTriangleRenderer. We will then close this OpenGL topic by showing how
you can use these classes for introducing animation. Again, we will demonstrate this anima-
tion through a working sample along with source code.

■Note We are not recommending that you circumvent the Android 1.5 OpenGL approach in favor of the
Android 1.1 test harness that we built in Chapter 10. By simply adding the AbstractRenderer to the classes
in 1.5, you will arrive at the equivalent of the Chapter 10 test harness. You can use this resulting 1.5 test
harness for most of your beginning needs. As you become more skilled with OpenGL, you can derive classes
similar to AbstractRenderer as necessary. Or you can just ignore the AbstractRenderer and implement
that functionality directly in the class you derive from the Renderer.

Now let’s proceed to draw the simple OpenGL triangle.

Reimplementing the Simple Triangle OpenGL Drawing
Now that the AbstractRenderer is in place, we’ll show you how to create a small activity that
draws the same simple OpenGL triangle you drew in Chapter 10. We will use the following files
to demonstrate this exercise:

	 •	 AbstractRenderer.java

	 •	 SimpleTriangleRenderer.java

	 •	 OpenGL15TestHarnessActivity.java

We presented the code for AbstractRenderer in the preceding section (see Listing 13-2), so
now we’ll show you the code for SimpleTriangleRenderer.

Simpletrianglerenderer.java
The code for the SimpleTriangleRenderer class (see Listing 13-3) is the same as the code for the
corresponding class in Chapter 10 (see Listing 10-12), except that the classes inherit from a dif-
ferent AbstractRenderer.

Listing 13-3. SimpleTriangleRenderer Source Code

//filename: SimpleTriangleRenderer.java
public class SimpleTriangleRenderer extends AbstractRenderer
{
 //Number of points or vertices we want to use
 private final static int VERTS = 3;

15967ch13.indd 398 6/5/09 11:15:32 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 13 ■ S IMpLIFY ING OpeNGL aND eXpLOrING L IVe FOLDerS 399

 //A raw native buffer to hold the point coordinates
 private FloatBuffer mFVertexBuffer;

 //A raw native buffer to hold indices
 //allowing a reuse of points.
 private ShortBuffer mIndexBuffer;

 public SimpleTriangleRenderer(Context context)
 {
 ByteBuffer vbb = ByteBuffer.allocateDirect(VERTS * 3 * 4);
 vbb.order(ByteOrder.nativeOrder());
 mFVertexBuffer = vbb.asFloatBuffer();

 ByteBuffer ibb = ByteBuffer.allocateDirect(VERTS * 2);
 ibb.order(ByteOrder.nativeOrder());
 mIndexBuffer = ibb.asShortBuffer();

 float[] coords = {
 -0.5f, -0.5f, 0, // (x1,y1,z1)
 0.5f, -0.5f, 0,
 0.0f, 0.5f, 0
 };
 for (int i = 0; i < VERTS; i++) {
 for(int j = 0; j < 3; j++) {
 mFVertexBuffer.put(coords[i*3+j]);
 }
 }
 short[] myIndecesArray = {0,1,2};
 for (int i=0;i<3;i++)
 {
 mIndexBuffer.put(myIndecesArray[i]);
 }
 mFVertexBuffer.position(0);
 mIndexBuffer.position(0);
 }

 //overridden method
 protected void draw(GL10 gl)
 {
 gl.glColor4f(1.0f, 0, 0, 0.5f);
 gl.glVertexPointer(3, GL10.GL_FLOAT, 0, mFVertexBuffer);
 gl.glDrawElements(GL10.GL_TRIANGLES, VERTS,
 GL10.GL_UNSIGNED_SHORT, mIndexBuffer);
 }
}

15967ch13.indd 399 6/5/09 11:15:32 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 13 ■ S IMpLIFY ING OpeNGL aND eXpLOrING L IVe FOLDerS400

OpenGL15testharnessactivity.java
Now we’ll show you the code for a simple activity (see Listing 13-4) that demonstrates how to
use the SimpleTriangleRenderer in Listing 13-3 to draw using the 1.5 GLSurfaceView class.

Listing 13-4. OpenGL15TestHarnessActivity Source Code

//filename: OpenGL15TestHarnessActivity.java
public class OpenGL15TestHarnessActivity extends Activity {
 private GLSurfaceView mTestHarness;
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 mTestHarness = new GLSurfaceView(this);
 mTestHarness.setEGLConfigChooser(false);
 mTestHarness.setRenderer(new SimpleTriangleRenderer(this));
 mTestHarness.setRenderMode(GLSurfaceView.RENDERMODE_WHEN_DIRTY);
 setContentView(mTestHarness);
 }
 @Override
 protected void onResume() {
 super.onResume();
 mTestHarness.onResume();
 }
 @Override
 protected void onPause() {
 super.onPause();
 mTestHarness.onPause();
 }
}

In Listing 13-4, we first instantiate a GLSurfaceView. Through setEGLConfigChooser(false),
we advise the SDK to choose a configuration as close to 16-bit RGB as possible, with or without
an optional depth buffer as close to 16 bits as possible. Refer to the 1.5 SDK documentation on
this method for more advanced options.

We then set the triangle renderer in the GLSurfaceView. GLSurfaceView has two rendering
modes: RENDERMODE_CONTINUOUSLY, which allows animation, and RENDERMODE_WHEN_DIRTY, which
draws only when necessary. The former is the default setting, whereby the renderer is called
again and again. So we indicate otherwise by choosing the latter. Once the GLSurfaceView is set
up this way for on-demand rendering, we set the GLSurfaceView in the activity.

You can use the code in Listing 13-5 to run this activity from any menu option.

Listing 13-5. Invoking an Activity

private void invoke15SimpleTriangle()
{
 Intent intent = new Intent(this,OpenGL15TestHarnessActivity.class);
 startActivity(intent);
}

15967ch13.indd 400 6/5/09 11:15:33 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 13 ■ S IMpLIFY ING OpeNGL aND eXpLOrING L IVe FOLDerS 401

Of course, you will have to register the activity in the AndroidManifest.xml file (see
Listing 13-6).

Listing 13-6. Specifying an Activity in the AndroidManifest.xml file

 <activity android:name=".OpenGL15TestHarnessActivity"
 android:label="OpenGL 15 Test Harness"/>

When you run this code, you will see the triangle that’s shown in Figure 10-3 (see
Chapter 10).

As you can see, the Android 1.5 SDK significantly simplifies OpenGL drawing. It simplifies
animation as well, as you’ll see in the next section.

OpenGL Animation Example
You can easily accommodate OpenGL animation in the new Android release by changing the
rendering mode on the GLSurfaceView object (see Listing 13-7).

Listing 13-7. Specifying Continuous-Rendering Mode

//get a GLSurfaceView
GLSurfaceView openGLView;

//Set the mode to continuous draw mode
openGLView.setRenderingMode(GLSurfaceView.RENDERMODE_CONTINUOUSLY);

(Note that we’re showing you how to change the rendering mode here because we had
specified RENDERMODE_WHEN_DIRTY in the previous section. As we mentioned, RENDERMODE_
CONTINUOUSLY is in fact the default setting, so animation is enabled by default.) Once the
rendering mode is continuous, it is up to the renderer’s onDraw method to do what’s neces-
sary to effect animation. To demonstrate this, we will show you an example where the triangle
drawn in the previous example is rotated in a circular fashion. This example has the following
two files:

	 •	 AnimatedTriangleActivity.java, which is a simple activity to host the GLSurfaceView

	 •	 AnimatedSimpleTriangleRenderer.java, which is responsible for animated drawing

Let us consider each of these files.

animatedtriangleactivity.java
The AnimatedTriangleActivity.java activity resembles the activity in Listing 13-4 that tests a
simple triangle drawing, so you should be able to understand it easily. The goal of this activity
is to provide a surface to draw on and then show it on the Android screen (see Listing 13-8).

The key line of code in this activity is highlighted in bold font. We basically took the
previous activity that we used for a simple drawing (see Listing 13-4) and commented out
the rendering mode. This lets the GLSurfaceView default to continuous-rendering mode,
which accommodates repeated calls to the onDraw method of the renderer, in this case
AnimatedSimpleTriangleRenderer.

15967ch13.indd 401 6/5/09 11:15:33 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 13 ■ S IMpLIFY ING OpeNGL aND eXpLOrING L IVe FOLDerS402

Listing 13-8. AnimatedTriangleActivity Source Code

//filename: AnimatedTriangleActivity.java
public class AnimatedTriangleActivity extends Activity {
 private GLSurfaceView mTestHarness;
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 mTestHarness = new GLSurfaceView(this);
 mTestHarness.setEGLConfigChooser(false);
 mTestHarness.setRenderer(new AnimatedSimpleTriangleRenderer(this));
 //mTestHarness.setRenderMode(GLSurfaceView.RENDERMODE_WHEN_DIRTY);
 setContentView(mTestHarness);
 }
 @Override
 protected void onResume() {
 super.onResume();
 mTestHarness.onResume();
 }
 @Override
 protected void onPause() {
 super.onPause();
 mTestHarness.onPause();
 }
}

Now let’s look into the AnimatedSimpleTriangleRenderer class, which appears in Listing
13-8. It’s responsible for drawing the rectangle at frequent intervals to simulate animation.

animatedSimpletrianglerenderer.java
The AnimatedSimpleTriangleRenderer class is very similar to the SimpleTriangleRenderer
(see Listing 13-3), except for what happens in the onDraw method. In this method, we set a
new rotation angle every four seconds. As the image gets drawn repeatedly, you will see
the triangle spinning slowly. Listing 13-9 contains the complete implementation of the
AnimatedSimpleTriangleRenderer class.

Listing 13-9. AnimatedSimpleTriangleRenderer Source Code

//filename: AnimatedSimpleTriangleRenderer.java
public class AnimatedSimpleTriangleRenderer extends AbstractRenderer
{
 private int scale = 1;
 //Number of points or vertices we want to use
 private final static int VERTS = 3;

 //A raw native buffer to hold the point coordinates
 private FloatBuffer mFVertexBuffer;

15967ch13.indd 402 6/5/09 11:15:33 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 13 ■ S IMpLIFY ING OpeNGL aND eXpLOrING L IVe FOLDerS 403

 //A raw native buffer to hold indices
 //allowing a reuse of points.
 private ShortBuffer mIndexBuffer;

 public AnimatedSimpleTriangleRenderer(Context context)
 {
 ByteBuffer vbb = ByteBuffer.allocateDirect(VERTS * 3 * 4);
 vbb.order(ByteOrder.nativeOrder());
 mFVertexBuffer = vbb.asFloatBuffer();

 ByteBuffer ibb = ByteBuffer.allocateDirect(VERTS * 2);
 ibb.order(ByteOrder.nativeOrder());
 mIndexBuffer = ibb.asShortBuffer();

 float[] coords = {
 -0.5f, -0.5f, 0, // (x1,y1,z1)
 0.5f, -0.5f, 0,
 0.0f, 0.5f, 0
 };
 for (int i = 0; i < VERTS; i++) {
 for(int j = 0; j < 3; j++) {
 mFVertexBuffer.put(coords[i*3+j]);
 }
 }
 short[] myIndecesArray = {0,1,2};
 for (int i=0;i<3;i++)
 {
 mIndexBuffer.put(myIndecesArray[i]);
 }
 mFVertexBuffer.position(0);
 mIndexBuffer.position(0);
 }

 //overridden method
 protected void draw(GL10 gl)
 {
 long time = SystemClock.uptimeMillis() % 4000L;
 float angle = 0.090f * ((int) time);

 gl.glRotatef(angle, 0, 0, 1.0f);

 gl.glColor4f(1.0f, 0, 0, 0.5f);
 gl.glVertexPointer(3, GL10.GL_FLOAT, 0, mFVertexBuffer);
 gl.glDrawElements(GL10.GL_TRIANGLES, VERTS,
 GL10.GL_UNSIGNED_SHORT, mIndexBuffer);
 }
}

15967ch13.indd 403 6/5/09 11:15:33 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 13 ■ S IMpLIFY ING OpeNGL aND eXpLOrING L IVe FOLDerS404

Now that you have both the AnimatedTriangleActivity.java and
AnimatedSimpleTriangleRenderer.java files, you can invoke this animated activity from
any menu item by calling the method identified in Listing 13-10.

Listing 13-10. Invoking the Animated Activity

 private void invoke15SimpleTriangle()
 {
 Intent intent = new Intent(this,AnimatedTriangleActivity.class);
 startActivity(intent);
 }

Don’t forget to register the activity in the AndroidManifest.xml file (see Listing 13-11).

Listing 13-11. Registering the New Activity in the AndroidManifest.xml File

 <activity android:name=".AnimatedTriangleActivity"
 android:label="OpenGL Animated Test Harness"/>

The changes outlined here make OpenGL a lot more approachable in the Android 1.5
SDK.	However,	you	should	still	review	the	background	information	we	provided	in	Chapter	10,	
which is essential for working with OpenGL on Android. And the recommendation to refer to
external OpenGL resources still holds.

 Now let’s move on. It’s time to explore live folders in the Android 1.5 SDK.

Exploring Live Folders
A live folder in Android is to a content provider what an RSS reader is to a publishing web site.
Let us explain. We said in Chapter 3 that content providers are similar to web sites that provide
information based on URIs. As web sites proliferated, with each publishing its information in
a unique way, there arose a need to aggregate information from multiple sites so that a user
could follow the developments through a single reader. To this end came the design of RSS.
RSS	forced	us	to	see	a	common	pattern	among	disparate	sets	of	information.	Having	a	com-
mon pattern lets you design a reader once and use it to read any type of content, as long as the
content is presented in a uniform way.

Live folders are not that different in concept. As an RSS reader provides a common interface
to published web-site content, a live folder defines a common interface to a content provider
in Android. As long as the content provider can satisfy this protocol, Android can create a live
folder on the device’s home page to represent that content provider. When a user clicks this live
folder, the system will contact the content provider. The content provider is then expected to
return a cursor. According to the live-folder contract, this cursor must have a predefined set of
columns. This cursor is then visually presented through a ListView or a GridView.

Based on this common-format idea, live folders work like this:

 1. First you create an icon on the home page representing a collection of rows coming from
a content provider. You make this connection by specifying a URI along with the icon.

 2. When a user clicks that icon, the system takes the URI and uses it to call the content
provider. The content provider returns a collection of rows through a cursor.

15967ch13.indd 404 6/5/09 11:15:33 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 13 ■ S IMpLIFY ING OpeNGL aND eXpLOrING L IVe FOLDerS 405

 3. As long as this cursor has columns expected by the live folder (such as name, descrip-
tion, and the program to invoke when that row is clicked), the system will present these
rows as a ListView or a GridView.

 4. Because the ListViews and GridViews are capable of updating their data when the
underlying data store changes, these views are called “live”—hence the name “live
folders.”

So two key principles are at work in live folders. The first is the set of same column names
across cursors. The second is that the views know how to look for any updates and change
themselves accordingly. This second point is not unique to live folders, but quite natural to all
views in the Android UI.

Now that you have some idea of what live folders are, we’ll systematically explore the live-
folder framework a bit more. We will do that in two subsections. In the first subsection, we
will examine the overall end-user experience of a live folder. This should further solidify your
understanding of the concept.

In the second subsection, we will show you how to build a live folder correctly so that it is
actually “live.” It does take some extra work to make a live folder “live,” so we will explore this
not-so-obvious aspect of live folders.

How a User Experiences Live Folders
Live folders are exposed to end users through the device’s home page. Users make use of the
live folders using a sequence like this:

 1. Access the device’s home page.

 2. Go to the context menu of the home page.

 3. Locate a context-menu option called “Folders” and click it to show any live folders
that might be available.

 4. Click the live folder you want to expose. This creates an icon on the home page repre-
senting the chosen live folder.

 5. Click the live-folder icon on the home page to bring up the rows of information in a
ListView or a GridView.

 6. Click one of the rows to invoke an application that knows how to display that row
of data.

 7. Use further menu options displayed by that application to view or manipulate a
desired item. You can also use the application’s menu options to create any new items
allowed by that application.

 8. Note that the live-folder display automatically reflects any changes to the item or set
of items.

We’ll walk you through these steps, illustrating them with screenshots. We will start with
step 1: a pristine Android 1.5 home page (see Figure 13-1).

15967ch13.indd 405 6/5/09 11:15:33 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 13 ■ S IMpLIFY ING OpeNGL aND eXpLOrING L IVe FOLDerS406

Figure 13-1. Android 1.5 home page

If you long-click this home page, you will see its context menu (see Figure 13-2).

Figure 13-2. Context menu on the Android 1.5 home page

15967ch13.indd 406 6/5/09 11:15:33 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 13 ■ S IMpLIFY ING OpeNGL aND eXpLOrING L IVe FOLDerS 407

If you click the Folders suboption, Android will open another menu showing any live fold-
ers that are available (see Figure 13-3). We will build a live folder in the next section, but for
now assume that the live folder we want has already been built. Assume that the live folder we
want is called “New live folder” (see Figure 13-3).

Figure 13-3. Viewing the list of live folders available

If you click this “New live folder,” Android creates an icon on the home page represent-
ing the live folder. In our example, the name of this folder will be “Contacts LF,” short for
“Contacts Live Folder” (see Figure 13-4). This live folder will display contacts from the
contacts database. (We’ll discuss how to name this folder later, when we describe the
AllContactsLiveFolderCreatorActivity class shown in Listing 13-13.)

You will learn in the next section that an activity is responsible for creating the Contacts
LF folder. For now, as far as the user experience is concerned, you can click the Contacts LF
icon to see a list of contacts displayed in a ListView (see Figure 13-5).

15967ch13.indd 407 6/5/09 11:15:33 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 13 ■ S IMpLIFY ING OpeNGL aND eXpLOrING L IVe FOLDerS408

Figure 13-4. Live-folder icon on the home page

Figure 13-5. Showing live-folder contacts

Depending on the number of contacts you have, this list might look different. You can
click one of the contacts to display its details (see Figure 13-6).

15967ch13.indd 408 6/5/09 11:15:33 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 13 ■ S IMpLIFY ING OpeNGL aND eXpLOrING L IVe FOLDerS 409

Figure 13-6. Opening a live-folder contact

You can click the Menu button at the bottom to see how you can manipulate that indi-
vidual contact (see Figure 13-7).

Figure 13-7. Menu options for an individual contact

15967ch13.indd 409 6/5/09 11:15:33 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 13 ■ S IMpLIFY ING OpeNGL aND eXpLOrING L IVe FOLDerS410

If you choose to edit the contact, you will see the screen shown in Figure 13-8.

Figure 13-8. Editing contact details

To see the “live” aspect of this live folder, you can delete this contact or create a new one.
Then when you go back to the live-folder view of Contacts LF, you will see those changes reflected.
You can do this by clicking the Back button repeatedly until you see the Contacts LF folder.

Building a Live Folder
Now that you know what live folders are, you can learn to build one. After that, you’ll learn
how to drag an icon onto the home page to use that live folder. We will also show you how the
“live” part works.

To build a live folder, you need two things: an activity and a content provider. The activity
is responsible for creating the live folder on the home page. The content provider is responsi-
ble for returning a cursor that conforms to a live-folder contract. Typically, you package these
two entities in an application and then deploy that application onto the device. You will also
need some supporting files to make all this work. We will explain and demonstrate these ideas
using a sample, which contains the following files:

	 •	 AndroidManifest.xml: This file defines which activity needs to be called to create the
definition for a live folder.

	 •	 AllContactsLiveFolderCreatorActivity.java: This activity is responsible for supplying
the definition for a live folder that can display all contacts in the contacts database.

15967ch13.indd 410 6/5/09 11:15:33 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 13 ■ S IMpLIFY ING OpeNGL aND eXpLOrING L IVe FOLDerS 411

	 •	 MyContactsProvider.java: This content provider will respond to the live-folder URI
that will return a cursor of contacts. This provider internally uses the contacts content
provider that ships with Android.

	 •	 MyCursor.java: This is a specialized cursor that knows how to perform a requery when
underlying data changes.

	 •	 BetterCursorWrapper.java: This file is needed by MyCursor to orchestrate the requery.

	 •	 SimpleActivity.java: This simple activity is needed for the creation of an Android
project.

We’ll describe each of these files to give you a detailed understanding of how live
folders work.

androidManifest.xml
You’re already familiar with AndroidManifest.xml; it’s the same file that is needed for all
Android applications. The live-folders section of the file, which is demarcated with a com-
ment, indicates that we have an activity called AllContactsLiveFolderCreatorActivity that is
responsible for creating the live folder (see Listing 13-12). This fact is expressed through the
declaration of an intent whose action is android.intent.action.CREATE_LIVE_FOLDER.

The label of this activity, “New live folder,” will show up in the context menu of the home
page	(see	Figure	13-3).	As	we	explained	in	the	“How	a	User	Experiences	Live	Folders”	section,	
you can get to the context menu of the home page by long-clicking the home page.

Listing 13-12. AndroidManifest.xml File for a Live-Folder Definition

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.ai.android.livefolders"
 android:versionCode="1"
 android:versionName="1.0">
 <application android:icon="@drawable/icon" android:label="@string/app_name">
 <activity android:name=".SimpleActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 <!-- LIVE FOLDERS -->
 <activity
 android:name=".AllContactsLiveFolderCreatorActivity"
 android:label="New live folder "
 android:icon="@drawable/icon">

15967ch13.indd 411 6/5/09 11:15:33 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 13 ■ S IMpLIFY ING OpeNGL aND eXpLOrING L IVe FOLDerS412

 <intent-filter>
 <action android:name="android.intent.action.CREATE_LIVE_FOLDER" />
 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>
 </activity>

 <provider android:authorities="com.ai.livefolders.contacts"
 android:multiprocess="true"
 android:name=".MyContactsProvider" />

 </application>
 <uses-sdk android:minSdkVersion="3" />
<uses-permission android:name="android.permission.READ_CONTACTS"></uses-permission>
</manifest>

Another notable point of the code in Listing 13-12 is the provider declaration, which is
anchored at the URI content://com.ai.livefolders.contacts and serviced by the provider
class MyContactsProvider. This provider is responsible for providing a cursor to populate the
ListView that opens when the corresponding live-folder icon is clicked (see Figure 13-5).

According to the live-folder protocol, the CREATE_LIVE_FOLDER intent will allow the home
page’s context menu to show the AllContactsLiveFolderCreatorActivity as an option titled
“New live folder” (see Figure 13-3). Clicking this menu option will create an icon on the home
page, as shown in Figure 13-4.

It is the responsibility of AllContactsLiveFolderCreatorActivity to define
this icon, which will consist of an image and a label. In our case, the code in
AllContactsLiveFolderCreatorActivity specifies this label as “Contacts LF.” So let us
take a look at the source code for this live-folder creator.

allContactsLiveFolderCreatoractivity.java
The AllContactsLiveFolderCreatorActivity class has one responsibility: to serve as the gen-
erator or creator of a live folder (see Listing 13-13). Think of it as a template for the live folder.
Every	time	this	activity	is	clicked	(through	the	Folders	option	in	the	home	page’s	context	
menu), it will generate a live folder on the home page.

This activity accomplishes its task by telling the invoker—the home page or live-folder
framework, in this case—the name of the live folder, the image to use for the live-folder icon,
the URI where the data is available, and the display mode (list or grid). The framework, in turn,
is responsible for creating the live-folder icon on the home page.

■Note For all the contracts needed by a live folder, see the Android 1.5 SDK documentation for the
android.provider.LiveFolders class.

15967ch13.indd 412 6/5/09 11:15:34 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 13 ■ S IMpLIFY ING OpeNGL aND eXpLOrING L IVe FOLDerS 413

Listing 13-13. AllContactsLiveFolderCreatorActivity Source Code

public class AllContactsLiveFolderCreatorActivity extends Activity
{
 @Override
 protected void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);

 final Intent intent = getIntent();
 final String action = intent.getAction();

 if (LiveFolders.ACTION_CREATE_LIVE_FOLDER.equals(action))
 {
 setResult(RESULT_OK,
 createLiveFolder(MyContactsProvider.CONTACTS_URI,
 "Contacts LF",
 R.drawable.icon)
);
 } else
 {
 setResult(RESULT_CANCELED);
 }
 finish();
 }

 private Intent createLiveFolder(Uri uri, String name, int icon)
 {
 final Intent intent = new Intent();
 intent.setData(uri);
 intent.putExtra(LiveFolders.EXTRA_LIVE_FOLDER_NAME, name);
 intent.putExtra(LiveFolders.EXTRA_LIVE_FOLDER_ICON,
 Intent.ShortcutIconResource.fromContext(this, icon));
 intent.putExtra(LiveFolders.EXTRA_LIVE_FOLDER_DISPLAY_MODE,
 LiveFolders.DISPLAY_MODE_LIST);
 return intent;
 }
}

The createLiveFolder method essentially sets values on the intent that invoked it. When
this intent is returned to the caller, the caller will know the following:

	 •	 The	live-folder	name

	 •	 The	image	to	use	for	the	live-folder	icon

	 •	 The	display	mode:	list	or	grid

	 •	 The	data	or	content	URI	to	invoke	for	data

15967ch13.indd 413 6/5/09 11:15:34 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 13 ■ S IMpLIFY ING OpeNGL aND eXpLOrING L IVe FOLDerS414

This information is sufficient to create the live-folder icon as shown in Figure 13-4. When
a user clicks this icon, the system will call the URI to retrieve data. It is up to the content pro-
vider identified by this URI to provide the standardized cursor. We’ll now show you the code
for that content provider: the MyContactsProvider class.

MyContactsprovider.java
MyContactsProvider has the following responsibilities:

 1. Identify the incoming URI that looks like content://com.ai.livefolders.contacts/
contacts.

 2. Make an internal call to the Android-supplied contacts content provider identified by
content://contacts/people/.

 3. Read every row from the cursor and map it back to a cursor like MatrixCursor with
proper column names required by the live-folder framework.

 4. Wrap the MatrixCursor in another cursor so that the requery on this wrapped cursor
will make calls to the contacts content provider when needed.

The code for MyContactsProvider is shown in Listing 13-14. Significant items are high-
lighted.

Listing 13-14. MyContactsProvider Source Code

public class MyContactsProvider extends ContentProvider {

 public static final String AUTHORITY = "com.ai.livefolders.contacts";

 //Uri that goes as input to the live-folder creation
 public static final Uri CONTACTS_URI = Uri.parse("content://" +
 AUTHORITY + "/contacts");

 //To distinguish this URI
 private static final int TYPE_MY_URI = 0;
 private static final UriMatcher URI_MATCHER;
 static{
 URI_MATCHER = new UriMatcher(UriMatcher.NO_MATCH);
 URI_MATCHER.addURI(AUTHORITY, "contacts", TYPE_MY_URI);
 }

 @Override
 public boolean onCreate() {
 return true;
 }

 @Override
 public int bulkInsert(Uri arg0, ContentValues[] values) {
 return 0; //nothing to insert
 }

15967ch13.indd 414 6/5/09 11:15:34 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 13 ■ S IMpLIFY ING OpeNGL aND eXpLOrING L IVe FOLDerS 415

 //Set of columns needed by a live folder
 //This is the live-folder contract
 private static final String[] CURSOR_COLUMNS = new String[]
 {
 BaseColumns._ID,
 LiveFolders.NAME,
 LiveFolders.DESCRIPTION,
 LiveFolders.INTENT,
 LiveFolders.ICON_PACKAGE,
 LiveFolders.ICON_RESOURCE
 };

 //In case there are no rows
 //use this stand-in as an error message
 //Notice it has the same set of columns of a live folder
 private static final String[] CURSOR_ERROR_COLUMNS = new String[]
 {
 BaseColumns._ID,
 LiveFolders.NAME,
 LiveFolders.DESCRIPTION
 };

 //The error message row
 private static final Object[] ERROR_MESSAGE_ROW =
 new Object[]
 {
 -1, //id
 "No contacts found", //name
 "Check your contacts database" //description
 };

 //The error cursor to use
 private static MatrixCursor sErrorCursor = new ➥

MatrixCursor(CURSOR_ERROR_COLUMNS);
 static
 {
 sErrorCursor.addRow(ERROR_MESSAGE_ROW);
 }

 //Columns to be retrieved from the contacts database
 private static final String[] CONTACTS_COLUMN_NAMES = new String[]
 {
 People._ID,
 People.DISPLAY_NAME,
 People.TIMES_CONTACTED,
 People.STARRED
 };

15967ch13.indd 415 6/5/09 11:15:34 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 13 ■ S IMpLIFY ING OpeNGL aND eXpLOrING L IVe FOLDerS416

 public Cursor query(Uri uri, String[] projection, String selection,
 String[] selectionArgs, String sortOrder)
 {
 //Figure out the uri and return error if not matching
 int type = URI_MATCHER.match(uri);
 if(type == UriMatcher.NO_MATCH)
 {
 return sErrorCursor;
 }

 Log.i("ss", "query called");

 try
 {
 MatrixCursor mc = loadNewData(this);
 mc.setNotificationUri(getContext().getContentResolver(),
 Uri.parse("content://contacts/people/"));
 MyCursor wmc = new MyCursor(mc,this);
 return wmc;
 }
 catch (Throwable e)
 {
 return sErrorCursor;
 }
 }

 public static MatrixCursor loadNewData(ContentProvider cp)
 {
 MatrixCursor mc = new MatrixCursor(CURSOR_COLUMNS);
 Cursor allContacts = null;
 try
 {
 allContacts = cp.getContext().getContentResolver().query(
 People.CONTENT_URI,
 CONTACTS_COLUMN_NAMES,
 null, //row filter
 null,
 People.DISPLAY_NAME); //order by

 while(allContacts.moveToNext())
 {
 String timesContacted = "Times contacted: "+allContacts.getInt(2);

15967ch13.indd 416 6/5/09 11:15:34 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 13 ■ S IMpLIFY ING OpeNGL aND eXpLOrING L IVe FOLDerS 417

 Object[] rowObject = new Object[]
 {
 allContacts.getLong(0), //id
 allContacts.getString(1), //name
 timesContacted, //description
 Uri.parse("content://contacts/people/"
 +allContacts.getLong(0)), //intent
 cp.getContext().getPackageName(), //package
 R.drawable.icon //icon
 };
 mc.addRow(rowObject);
 }
 return mc;
 }
 finally
 {
 allContacts.close();
 }
 }

 @Override
 public String getType(Uri uri)
 {
 //indicates the MIME type for a given URI
 //targeted for this wrapper provider
 //This usually looks like
 // "vnd.android.cursor.dir/vnd.google.note"
 return People.CONTENT_TYPE;
 }

 public Uri insert(Uri uri, ContentValues initialValues) {
 throw new UnsupportedOperationException(
 "no insert as this is just a wrapper");
 }

 @Override
 public int delete(Uri uri, String selection, String[] selectionArgs) {
 throw new UnsupportedOperationException(
 "no delete as this is just a wrapper");
 }

 public int update(Uri uri, ContentValues values,
 String selection, String[] selectionArgs)
 {
 throw new UnsupportedOperationException(
 "no update as this is just a wrapper");
 }
}

15967ch13.indd 417 6/5/09 11:15:34 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 13 ■ S IMpLIFY ING OpeNGL aND eXpLOrING L IVe FOLDerS418

The set of columns shown in Listing 13-15 includes the standard columns that a live
folder needs.

Listing 13-15. Columns Needed to Fulfill the Live-Folder Contract

 private static final String[] CURSOR_COLUMNS = new String[]
 {
 BaseColumns._ID,
 LiveFolders.NAME,
 LiveFolders.DESCRIPTION,
 LiveFolders.INTENT,
 LiveFolders.ICON_PACKAGE,
 LiveFolders.ICON_RESOURCE
 };

Most of these fields are self-explanatory, except for the INTENT item. This field points to an
intent or a URI that needs to be invoked when a user clicks the item in the live folder.

Also note that the content provider executes the code in Listing 13-16 to tell the cursor
that it needs to watch the data for any changes.

Listing 13-16. Registering a URI with a Cursor

MatrixCursor mc = loadNewData(this);
mc.setNotificationUri(getContext().getContentResolver(),
 Uri.parse("content://contacts/people/"));

It should be an interesting fact that the URI to watch is not the URI of our
MyContactsProvider content provider, but the URI of the Android-supplied content provider
for contacts. This is because MyContactsProvider is just a wrapper for the “real” content pro-
vider. So this cursor needs to watch the underlying content provider instead of the wrapper.

It is also important that we wrap the MatrixCursor in our own cursor, as shown in Listing
13-17.

Listing 13-17. Wrapping a Cursor

MatrixCursor mc = loadNewData(this);
mc.setNotificationUri(getContext().getContentResolver(),
 Uri.parse("content://contacts/people/"));
MyCursor wmc = new MyCursor(mc,this);

To understand why you need to wrap the cursor, you must examine how views operate to
update changed content. A content provider typically tells a cursor that it needs to watch for
changes by registering a URI as part of implementing the query method. This is done through
cursor.setNotificationUri. The cursor then will register this URI and all its children URIs
with the content provider. Then when an insert or delete happens on the content provider,
the code for the insert and delete operations needs to raise an event signifying a change to the
data in the rows identified by a particular URI.

15967ch13.indd 418 6/5/09 11:15:34 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 13 ■ S IMpLIFY ING OpeNGL aND eXpLOrING L IVe FOLDerS 419

This will trigger the cursor to get updated via requery, and the view will update accord-
ingly. Unfortunately, the MatrixCursor is not geared for this requery. SQLiteCursor is geared
for it, but we can’t use SQLiteCursor here because we’re mapping the columns to a new set of
columns.

To accommodate this restriction, we have wrapped the MatrixCursor in a cursor wrapper
and overridden the requery method to drop the internal MatrixCursor and create a new one
with the updated data.

You will see this illustrated in the following two classes.

MyCursor.java
Notice how MyCursor is initialized with a MatrixCursor in the beginning (see Listing 13-18).
On requery, MyCursor will call back the provider to return a MatrixCursor. Then the new
MatrixCursor will replace the old one by using the set method.

We could have done this by overriding the requery of the MatrixCursor, but that class does
not provide a way to clear the data and start all over again. So this is a reasonable workaround.
(Note that MyCursor extends BetterCursorWrapper; we’ll discuss the latter in the next subsection.)

Listing 13-18. MyCursor Source Code

public class MyCursor extends BetterCursorWrapper
{
 private ContentProvider mcp = null;

 public MyCursor(MatrixCursor mc, ContentProvider inCp)
 {
 super(mc);
 mcp = inCp;
 }
 public boolean requery()
 {
 MatrixCursor mc = MyContactsProvider.loadNewData(mcp);
 this.setInternalCursor(mc);
 return super.requery();
 }
}

Now you’ll look at the BetterCursorWrapper class to get an idea of how to wrap a cursor.

BetterCursorWrapper.java
The BetterCursorWrapper class (see Listing 13-19) is very similar to the CursorWrapper class in
the Android database framework. But we need two additional things that CursorWrapper lacks.
First, it doesn’t have a set method to replace the internal cursor from the requery method.
Second, CursorWrapper is not a CrossProcessCursor. Live folders need a CrossProcessCursor as
opposed to a plain cursor because live folders work across process boundaries.

15967ch13.indd 419 6/5/09 11:15:34 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 13 ■ S IMpLIFY ING OpeNGL aND eXpLOrING L IVe FOLDerS420

Listing 13-19. BetterCursorWrapper Source Code

public class BetterCursorWrapper implements CrossProcessCursor
{
 //Holds the internal cursor to delegate methods to
 protected CrossProcessCursor internalCursor;

 //Constructor takes a crossprocesscursor as an input
 public BetterCursorWrapper(CrossProcessCursor inCursor)
 {
 this.setInternalCursor(inCursor);
 }

 //You can reset in one of the derived class's methods
 public void setInternalCursor(CrossProcessCursor inCursor)
 {
 internalCursor = inCursor;
 }

 //All delegated methods follow
 public void fillWindow(int arg0, CursorWindow arg1) {
 internalCursor.fillWindow(arg0, arg1);
 }
 // other delegated methods
}

We	haven’t	shown	you	the	entire	class,	but	you	can	easily	use	Eclipse	to	generate	the	
rest	of	it.	Once	you	have	this	partial	class	loaded	into	Eclipse,	place	your	cursor	on	the	vari-
able named internalCursor. Right-click and choose Source ➤ Generate Delegated Methods.
Eclipse	will	then	populate	the	rest	of	the	class	for	you.	Let	us	now	show	you	the	simple	activity	
you need to complete this sample project.

Simpleactivity.java
SimpleActivity.java (see Listing 13-20) is not an essential class for live folders, but its inclu-
sion in the project gives you a common pattern for all your projects. Plus, it allows you to
deploy	the	application	and	see	it	onscreen	when	you	are	debugging	through	Eclipse.	

Listing 13-20. SimpleActivity Source Code

public class SimpleActivity extends Activity
{
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }
}

15967ch13.indd 420 6/5/09 11:15:34 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 13 ■ S IMpLIFY ING OpeNGL aND eXpLOrING L IVe FOLDerS 421

You can use any simple XML layout that you would like for the main.xml identified by
R.layout.main. Listing 13-21 shows an example.

Listing 13-21. Simple XML Layout File

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Live Folder Example"
 />
</LinearLayout>

Now you have all the classes you need to build, deploy, and run the sample live-folder
project	through	Eclipse.	Let	us	conclude	this	section	on	live	folders	by	showing	you	what	hap-
pens when you access the live folder.

exercising Live Folders
Once you have all these files for the live-folder project ready, you can build them and deploy
them	to	the	emulator.	When	you	deploy	this	application	through	Eclipse,	you	will	see	the	
simple activity show up on the emulator. You are now ready to make use of the live folder that
we have constructed.

Navigate to the device’s home page; it should look like the screen in Figure 13-1. Follow
the	steps	outlined	at	the	beginning	of	the	section,	“How	a	User	Experiences	Live	Folders.”	
Specifically, locate the live folder you created and create the live-folder icon as shown in
Figure 13-4. Click the Contacts LF live-folder icon, and you will see the contact list popu-
lated with contacts, as shown in Figure 13-5.

As we come to the conclusion of this book, let us shift our attention to the future of
Android and how the 1.5 SDK is enabling some of those expectations.

The Future of Android and the 1.5 SDK
You can already run Android applications on these types of devices:

	 •	 T-Mobile	G1

	 •	 Android	Dev	Phone	1

	 •	 GiiNii	Movit

The T-Mobile G1 was one of the first products to be released based on the Android 1.0
SDK. It has most of the bells and whistles of a general-purpose computing device, with a
phone attached. At that point, Android did not support a virtual onscreen keyboard (otherwise
known as a “soft” keyboard). Android 1.5 does offer this feature, and it’s possible that future
releases of these devices won’t have a physical keyboard at all.

15967ch13.indd 421 6/5/09 11:15:34 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 13 ■ S IMpLIFY ING OpeNGL aND eXpLOrING L IVe FOLDerS422

Google has also released the Android Dev Phone 1 so developers can test their applica-
tions. This device, which costs around $400, offers the following features:

	 •	 Touch	screen

	 •	 Track	ball

	 •	 Megapixel	camera

	 •	 WiFi

	 •	 Physical	keyboard

	 •	 SD	card

The GiiNii Movit (http://www.giinii.com/movit_detail.html), marketed as an Internet
device, comes with the following features:

	 •	 WiFi

	 •	 Skype

	 •	 Microphone/speaker

	 •	 Video/audio

	 •	 Built-in	support	for	MySpace,	Twitter,	and	Facebook

This device truly marks a shift toward netbooks, whereby smaller computers are pow-
ered by the Android OS. The manufacturers that are anticipated to follow this trend include
the following:

	 •	 Hewlett-Packard	(HP)

	 •	 Dell

	 •	 ASUSTeK	Computer	Inc.	(ASUS)

To support this new push, the Android 1.5 SDK comes with the following key features:

	 •	 Virtual	(“soft”)	keyboard

	 •	 Home-screen	widgets

	 •	 Music	player

	 •	 Calendar

	 •	 Picasa

	 •	 YouTube

	 •	 Google	Talk

	 •	 Improved	Gmail

15967ch13.indd 422 6/5/09 11:15:34 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 13 ■ S IMpLIFY ING OpeNGL aND eXpLOrING L IVe FOLDerS 423

The following cell-phone manufacturers are expecting to release new devices that support
the Android OS:

	 •	 HTC	Corp.

	 •	 LG	Electronics

	 •	 Motorola

	 •	 Samsung

	 •	 Sony	Ericsson

With all these advances, the future of Android looks quite bright.

Key Online Resources for the 1.5 SDK
We would like to conclude this chapter by listing some key URLs that will come in handy as
you discover more about the 1.5 SDK and future releases of Android.

	 •	 Android Developers home page (http://developer.android.com): This is the main entry
page for Android developers. As new SDKs are announced, this page will lead you to
the right URLs.

	 •	 The Developer’s Guide (http://developer.android.com/guide/): This is the Android Dev
Guide for the most current release. Currently this documentation covers the Android
1.5 SDK.

	 •	 Cupcake Roadmap (http://source.android.com/roadmap/cupcake): The 1.5 release is
sometimes referred to as “cupcake,” although the two are in fact distinct. Most of the
features from cupcake have been rolled into the 1.5 SDK. You can use this URL to learn
more about cupcake’s features.

	 •	 Android 1.5 Platform Highlights (http://developer.android.com/sdk/android-1.5-
highlights.html): You can use this URL to find out about the new features in 1.5.

	 •	 SDK downloads (http://developer.android.com/sdk/1.5_r1/index.html): You can
download the Android 1.5 SDK from this site.

	 •	 Android Open Source Project (http://source.android.com/): If you are looking for
Android SDK source code, you will find it here.

	 •	 Google I/O Developer Conference (http://code.google.com/events/io/): This site con-
tains	content	from	the	Google	I/O	conference,	including	material	from	sessions	about	
Android.

	 •	 Android Roadmap (http://source.android.com/roadmap): This is where Google pub-
lishes roadmaps for upcoming releases.

	 •	 Git (http://git-scm.com/): To work with Android code, you need to use Git, an open
source version-control system that accommodates large, distributed projects.

	 •	 “Future-Proofing Your Apps”: (http://android-developers.blogspot.com/2009/04/
future-proofing-your-apps.html): This blog post describes backward-compatibility
mechanisms you can use while developing your applications.

15967ch13.indd 423 6/5/09 11:15:34 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

Chapter 13 ■ S IMpLIFY ING OpeNGL aND eXpLOrING L IVe FOLDerS424

Summary
This chapter covered two important aspects of the Android 1.5 SDK: OpenGL, and live folders.
We offered background information about both concepts along with working samples. We also
described how Android is well-positioned for growth due to its adaptability for netbooks and
other computing appliances. Finally, we hope that the URLs we provided prove useful as you
continue your exploration of Android.

15967ch13.indd 424 6/5/09 11:15:34 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

425

Index

Numbers
3rd Generation Partnership Project (3GPP),

315–316

A
AbsoluteLayout layout manager, 141–142

AbstractRenderer class, 343

AbstractRenderer source code (OpenGL),
396–397

AbstractRenderer.java, 345, 354–355

ACTION_GET_CONTENT action, 104–105

ACTION_PICK action, 102–104

actions, generic, 95

activities

activity.onCreateContextMenu() meth-
od, 165

activity.registerForContextMenu(view)
method, 166

adding animation to, 201–204

categories, 100

code for layout animation, 207–208

components to invoke, 97–98

creating, 199–200, 206–208

defined, 10, 24

lifecycle methods of, 39

live folders and, 410

state transitions of, 40–41

adapters, Android, 146–149

Adaptive Multi-Rate (AMR) narrowband
audio codec, 315–316

addRegularMenuItems function, 159–160

ADT (Android Development Tools), install-
ing, 22–24

ADT plug-in for Eclipse, 226, 228, 238–239

AIDL (Android Interface Definition Lan-
guage) services

calling from client applications, 288–291

defining service interface in, 283–286

implementing interface, 283–286

overview, 282–283

passing complex types to, 292–299

alert-dialogs

builder, 180–181

designing, 177–178

AllContactsLiveFolderCreatorActivity.java,
412–414

alpha animation, 204, 211

alphabeticShortcut tags, menu (XML), 176

alternative menus, 168–172

AnalogClock control, 129–130

Android

1.0 SDK, downloading, 22

1.1/1.5, installing, 22

android.app.Application class, 40–41

android.app.Service public methods,
277–278

android.appwidget, 15

android.jar file, 19

android.location package, 238, 249

android.location.Geocoder class, 249

AndroidManifest.xml (live folders), 25,
29, 162–163, 411–412

android.media package, 301

android.media.MediaRecorder class, 311

android.os.Debug class, 41

android.preference.ListPreference,
365–366

android.preference.PreferenceActivity
class, 367

android.util.Log, 41–42

15967index.indd 425 6/5/09 11:14:28 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

nINDEX426

android.view.animation package, 205

android.view.animation.Animation class,
217

android.view.LayoutInflater class,
180–181

android.view.Menu class, 151

android.view.MenuInflater class, 173

android.widget.Button class, 117

Asset Packaging Tool (AAPT), 30, 49

Dev Phone (Google), 4, 422

interfacing with OpenGL ES, 338–342

Market, 227

MIME types structure, 69–71

SDK, 9, 41, 301

Software Development Kit (SDK), 21

Virtual Device (AVD), creating, 383–384

Android 1.5 SDK

Android Virtual Device (AVD), creating,
383–384

android.bat tool parameters, 383

creating new application, 379–382

downloading, 377

features, 422–423

input-method framework (IMF), 394

installing ADT plug-in for, 377–379

MediaRecorder class for video capture,
384–386

MediaStore class, 386–390

online resources for, 423

scanning media store for content,
390–392

voice recognition, 392–393

Android applications

debugging, 41–42

lifecycle of, 38–41

structure of, 28–30

Android Platform

advanced UI concepts, 12–13

Android emulator, 9–10

Dalvik VM, 4–5

foundational components, 11

future of, 421–423

history of, 3–4

vs. Java ME, 5–8

Java packages in Android SDK, 15–18

media and telephony components, 14–15

overview, 1–2

service components, 13

software stack, 8–9

source code, 18

UI framework, 10

AnimatedSimpleTriangleRenderer.java,
402–404

AnimatedTriangleActivity.java, 401–402

animation

AnimationDrawable class, 197, 201

AnimationListener class, 221–222

example (OpenGL), 401–404

supported types, 12

animation, 2D

frame-by frame animation, 198–204

layout animation. See layout animation

overview, 197

view animation. See view animation

APIs

mapping, 238–249

media. See media APIs

telephony. See telephony APIs

.apk files, 228–229, 301

applications

Android 1.5, building, 379–382

application preferences, defined, 363

installing updates and signing, 229

signing for deployment, 226–229

appwidget classes, 15

architecture of content providers, 67–68

ARM (Advanced RISC Machine), 10

ArrayAdapter, 147–148

artifacts of Android applications, 29–30

AssetManager class, 59

assets directory (resources), 59

attributes

android.preference.ListPreference,
365–366

gravity, 134

15967index.indd 426 6/5/09 11:14:28 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

nINDEX 427

audio

files, playing (examples), 14

recording, 311–316

recording with intents, 386–388

authority, defined (content providers), 68

AutoCompleteTextView control, 115–116

AVD (Android Virtual Device), creating,
383–384

B
background threads, geocoding with,

253–256

Bellard, Fabrice, 10

BetterCursorWrapper.java (live folders),
419–420

bindService() method, 291

Bornstein, Dan, 5

boundaries, process, 229–230

bounding volume (box), 330–331

built-in content providers, 61–62

button controls, 117–122

buttons and listeners, setting up, 181

C
callbacks, incorporation in dialogs, 184–185

camera and coordinates (OpenGL), 334–338

Camera class for depth perception, 220–221

camera settings, changing (OpenGL test
harness), 358–359

camera symbolism, 335–336

categories, intent, 99–101

categories of preferences, creating, 375–376

certificate authority (CA), 226

certificates, self-signed, 226–228

checkableBehavior tags (XML), 175

CheckBox control, 119–120

CheckBoxPreference, 367–369

classes for defining constants, 99

click events, 117–118

client applications, calling AIDL services
from, 288–291

code, building UI in, 108–111

color (glColor), 334

color resources, 51, 55–57

COM (Component Object Model), 326–327

com.google.android.maps package, 238

Commons IO, Apache, 267

compiled/noncompiled resources, 48–49

complex types, passing to services, 292–299

components

to invoke activities, 97–98

rules for resolving intents to, 102

Connected Limited Device Configuration
(CLDC), 5–7

connection timeouts, 269

constants, classes for defining, 99

container view, defined, 108

content providers

adding files to, 77–78

Android content URIs, 68–69

Android cursors, 73–74

Android MIME types structure, 69–71

architecture of, 67–68

built-in, 61–62

ContentProvider class, 81–83

databases, planning, 79–81

defined, 11, 25

delete method, 87–88

explicit WHERE clauses, 75–76

fundamentals, 60–61

insert method, 85–87

inserting records, 76–77

live folders and, 410

MIME-type contracts, fulfilling, 83–84

passing WHERE clauses, 74–75

projection maps, 90

query method, 84–85

reading data with URIs, 71–73

registering content provider, 90–91

steps, 79

update method, 87

updates and deletes, 78–79

UriMatcher class, 88–90

15967index.indd 427 6/5/09 11:14:28 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

nINDEX428

content URIs, 36

ContentValues/ContentResolver classes,
76–78

context menus, 165–168

continuous rendering mode (OpenGL), 401

contracts, fulfilling MIME-type, 83–84

controls, Android

button controls, 117–122

date/time controls, 128–130

Gallery control, 130–131

grid controls, 126–127

list controls, 122–126

MapView control, 130

text controls, 113–117

coordinates (OpenGL ES), 329–331

coordinates, world, 330–331, 335

CORBA (Common Object Request Broker
Architecture), 326–327

cursors, Android, 72–74, 418–419

custom adapters, creating, 148–149

custom permissions, 232–238

custom resource IDs, 48

customizing layout for screen configura-
tions, 145–146

D
Dalvik

Debug Monitor Service (DDMS), 260–
261, 310

VM overview, 4–5

data

reading with URIs, 71–73

responding to changing (menus), 172

returning after invoking actions, 103–104

URIs, intents and, 94

databases

DatabaseHelper class, 37–38

exploring on emulator, 62–66

planning, 79–81

DatePicker control, 128–129

date/time controls, 128–130

debugging

Android applications, 41–42

debug certificates, 239–240

layouts with Hierarchy Viewer, 149–150

delete method, 87–88

deletes and updates, 78–79

deployment

of live folders through Eclipse, 421

signing applications for, 226–229

DialogRegistry class, 192

dialogs, Android

alert dialogs, designing, 177–178

incorporation of callbacks in, 184–185

managed dialogs. See managed dialogs

overview, 176–177

prompt dialogs, designing, 179–184, 185

digital certificates, 226

DigitalClock control, 129–130

dimension resources, 53–54

dimension types supported, 138–139

Direct3D standard, 326–327

directory structure, 60

DirectX API, Microsoft, 326

downloading

Android SDK 1.0, 22

Eclipse IDE for Java Developers, 22

JDK 6, 21–22

drawing

Drawable class, 201

with OpenGL ES, 329–330

simple triangle, 356–357

surfaces, 334, 340–341

vertices, 330–332

E
Eclipse

deploying live folders through, 421

Eclipse 3.4, 377

IDE for Java Developers, 22, 27

installing ADT plug-in for, 377–379

15967index.indd 428 6/5/09 11:14:28 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

nINDEX 429

EditText control, 115, 136–138

EditTextPreference, 370–371

EGL Graphics Interface

context, 338–341

EglHelper.java, 352–354

overview, 327–328

EglHelper utility class, 343

EglHelper.java, 345

e-mail, 322–323

emulators

Android, 9–10

exploring databases on, 62–66

passing command-line arguments to,
309

sending SMS messages to, 320

enabled tags, menu (XML), 176

entry-point activity, 32

exceptions with HTTP services, 269–271

expanded menus, 163

extending ContentProvider class, 81–83

extension of android.app.Application class,
40–41

extras (intent attributes), 96–97

eye points, 335–336

F
far points, 337

files

adding to content providers, 77–78

FileDescriptors, 306

flight-options example (preferences),
363–367

folders, SMS, 321–322

for loops, 74

foundational components, Android, 11

frame-by frame animation, 12, 197–204

FrameLayout layout manager, 143–144

FreeType library, 9

frustum, defined, 325

G
Gallery control, 130–131

gen subdirectory (R. Java), 44

generic actions, 95

GenericManagedAlertDialog, 194

GenericPromptDialog class, 195

geocoding

with background threads, 253–256

Geocoder class, 250–252

overview, 249–250

to points with location names, 252–253

GeoPoint class, 248

GET Requests, HTTP, 264–265

GET_CONTENT action, 104–105

getApplication() method, 277

getIntent() method, 169

getInterpolation method, 213

getItemId() method, 160

getType() method, 37, 84

GiiNii Movit device, 422

Git source-code control system, 18

glClear method, 334

glColor method, 334

glDrawElements method, 332–333

glFrustum method and viewing volume,
336–337

Global Positioning System (GPS), 238

GLSurfaceView, 342–343

gluLookAt method and camera symbolism,
335–336

glVertexPointer method, 330–332

glViewport and screen size, 338

Google Maps, 238–240, 246

GPS Exchange Format (GPX), 261

gravity property, 132–134

grid controls, 126–127

GridView

control, 126–127

live folders and, 404–405

group category tags (XML), 175

group IDs to create menu groups, 154

15967index.indd 429 6/5/09 11:14:28 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

nINDEX430

H
handheld devices, 4

Hello World! example, 25–28

HTTP services

exceptions, 269–271

HttpClient for HTTP GET Requests,
264–265

HttpClient for HTTP POST Requests,
266–269

multithreading issues, 272–275

overview, 263

HttpMime, Apache, 267

HttpPost in Android (example), 13

I
icon menus, 163–164

icon tags, menu (XML), 175

identity matrix, defined, 214

IDialogFinishedCallBack interface, 193

IDialogProtocol interface, 190

IDs, defining custom resource, 48

image resources, 54–55

ImageButton control, 118

IMF (input-method framework), 394

incoming messages, monitoring, 319–321

indexing into point buffer, 332

indices, adding triangle with, 360–362

initialize method, 217

input-method framework (IMF), 394

input methods, writing, 16

insert() method, 38, 85–87

inserting records, 76–77

installing

Android 1.1/1.5, 22

ADT, 22–24

ADT plug-in, 377–379

updates to applications, 229

intents

ACTION_GET_CONTENT, 104–105

ACTION_PICK, 102–104

basics, 91

categories, 99–101

class, defined, 11

classes for defining constants, 99

components to invoke activities, 97–98

data URIs and, 94

defined, 24

extras, 96–97

generic actions, 95

prefabricated applications/intents, 92–94

for recording audio, 386–388

responding to menu items with, 156

rules for resolving to components, 102

for taking pictures, 388–390

interface for media application, 301–305

Internet Assigned Numbers Authority
(IANA), 69

interpolators (animation), 212–213

interprocess communication, 276

ItemizedOverlay, marking up maps with,
246–248

J
jarsigner tool, 228–229

Java API 1.4, 14

Java EE (Java Platform, Enterprise Edition),
5

Java ME (Java Platform, Micro Edition)

vs. Android Platform, 5–8

OpenGL ES and, 327–328

Java packages, 15–18

Java SE Development Kit (JDK). See JDK 6,
downloading

Java SE (Java Platform, Standard Edition), 5

Java Virtual Machine (JVM), 2

JAVA_HOME environment variable, 22

15967index.indd 430 6/5/09 11:14:28 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

nINDEX 431

JavaFX, 7

JavaServer Faces (JSF), 107

java.util.List/java.util.Map, 292

JDK 6, downloading, 21–22

JSR, 327

K
K Virtual Machine (KVM), 7

Keyhole Markup Language (KML), 261

keytool utility, 226

Khronos Group, 326–327

L
launch configuration, Eclipse, 27

layout animation

activity and ListView, creating, 206–208

interpolators, 212–213

ListView, animating, 209–212

overview, 204

planning test-harness, 205–206

tweening animation types, 204–205

layout managers, Android

AbsoluteLayout layout manager, 141–142

customizing layout for screen configura-
tions, 145–146

FrameLayout layout manager, 143–144

LinearLayout layout manager, 131–134

overview, 131

RelativeLayout layout manager, 139–140

TableLayout layout manager, 134–139

layout resources, 45–47

LayoutAnimationController, 204

layouts, debugging/optimizing with Hierar-
chy Viewer, 149–150

lifecycle of Android applications, 38–41

LinearLayout layout manager, 131–134

Linkify Class, 114–115

Linux kernel version 2.6, 8

list controls, 122–126

ListActivity class, 34

listeners

and buttons, setting up, 181

prompt dialog, 182

responding to menu items through,
155–156

ListPreference, 365–367

ListView

animating, 209–212

control, 122–126

creating, 206–208

live folders and, 404–405

live folders

AllContactsLiveFolderCreatorActivity.
java, 412–414

AndroidManifest.xml, 411–412

BetterCursorWrapper.java, 419–420

building, 410–411

deploying through Eclipse, 421

MyContactsProvider.java, 414–419

MyCursor.java, 419

overview, 404–405

SimpleActivity.java, 420–421

user experience of, 405–410

loading menus through XML files, 172

local services

basics and examples, 277–282

defined, 25, 276

location-based services

android.location package, 249

geocoding. See geocoding

LocationManager service, 257–261

mapping APIs, 238–249

overview, 238

LogCat, 42

long clicks, 165

look-at points, 335–336

15967index.indd 431 6/5/09 11:14:28 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

nINDEX432

M
M3G graphics standard, 328

managed dialogs

DialogRegistry class, 192

GenericManagedAlertDialog class, 194

GenericPromptDialog class, 195–196

IDialogFinishedCallBack interface, 193

IDialogProtocol interface, 190

ManagedActivityDialog class, 191

ManagedDialogsActivity class, 192

protocol overview, 186

recasting nonmanaged as managed,
186–188

simplifying managed-dialog protocol,
188–190

managedQuery() method, 34, 36, 75–76

manifest editor, 231, 233

manifest files (AndroidManifest.xml), 15

map-api keys (Google), 238–240

mapping APIs, 238–249

maps

MapView control, 130

MapView/MapActivity classes, 240

projection, 90

matching activities, 170

matrices, transformation, 222

Matrix class, 220

MD5 fingerprint (certificates), 239–240

media

components, Android, 14–15

MediaPlayer, 305, 311

MediaRecorder class for video capture
(Android 1.5), 384–386

MediaScannerConnection class, 390–392

MediaStore class (Android 1.5), 386–390

store, 390–392

media APIs

application user interface, 301–305

audio recording, 311–316

media recording/playback, 312–315

MediaPlayer oddities, 311

MediaPlayer to play back local files, 305

overview, 301

setDataSource method, 305–307

video content, playing, 307–311

MenuBuilder.addIntentOptions Method,
171

menus, Android

alternative menus, 168–172

basics, 151–152

context menus, 165–168

creating, 153–154

creating test harness. See test harness
sample application

expanded menus, 163

icon menus, 163–164

loading through XML files, 172

menuCategory tags (XML), 175

responding to changing data, 172

responding to menu items, 154–156

responding to XML-based menu items,
174

Submenus, 164–165

system menus, provisioning for, 165

XML menu resource files, 172–174

XML menu tags, 175–176

messages

monitoring incoming, 319–321

sending (SMS), 316–319

metadata, defining for databases, 79–80

Microsoft DirectX API, 326

MIME types structure, Android, 69–71

Mime4j, Apache, 267

MIME-type contracts, fulfilling, 83–84

Miner, Rich, 3

modal dialogs, 184

MultiAutoCompleteTextView control,
116–117

multipart POST calls, 267–269

multithreading issues (HttpClient), 272–275

MyContactsProvider.java (live folders),
414–419

MyCursor.java (live folders), 419

15967index.indd 432 6/5/09 11:14:28 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

nINDEX 433

N
near points, 337

nested PreferenceScreen elements, 373–374

nonmanaged dialogs, recasting as man-
aged, 186–188

nonprimitive types supported by AIDL, 292

Notepad application, 31–38

NotePadProvider class, 36–37

Notes classes, 34

NotificationManager class, 282

O
onCreate() method, 33, 37–38, 277

onCreateContextMenu() method, 167

onCreateOptionsMenu callback method,
152

onCreateOptionsMenu method, 169

onDestroy() method, 277

online resources, OpenGL ES, 328–329

onListItemClick method (NotesList), 35

OnMenuClickListener interface, 155

onOptionsItemSelected methods, 152,
154–155

onPrepareOptionsMenu, 172

Open Handset Alliance, 3, 18

OpenCORE, 8

OpenGL

animation example, 401–404

OpenGL15TestHarnessActivity.java,
400–401

simplifying, 396–398

triangle OpenGL drawing, 398–401

OpenGL ES (OpenGL for Embedded Sys-
tems)

1.0 standard, 12

associating drawing surfaces with,
340–341

background, 327–328

closing resources at program end,
341–342

drawing with, 329–330

EGL context, 338–341

glClear method, 334

glColor method, 334

glDrawElements method, 332–333

glVertexPointer method, 330–332

interfacing with Android, 338–342

online resources, 328–329

using, 328

OpenGL graphics API

camera and coordinates, 334–338

EGL overview, 327–328

glFrustum method and viewing volume,
336–337

gluLookAt method and camera symbol-
ism, 335–336

glViewport and screen size, 338

Java ME and, 327–328

M3G graphics standard, 328

OpenGL ES. See OpenGL ES (OpenGL for
Embedded Systems)

overview, 326–327

OpenGL test harness example

AbstractRenderer.java, 354–355

camera settings, 358–359

designing, 343–345

EglHelper.java, 352–354

OpenGLDrawingThread.java, 345,
348–352

OpenGLTestHarnessActvity class,
345–346

OpenGLTestHarness.java, 345, 346–348

overview, 342–343

Renderer.java, 354

triangle, adding with indices, 360–362

TriangleRenderer.java, 355–357

optimizing layouts with Hierarchy Viewer,
149–150

options menus, 153

orientation attribute (LinearLayout), 132

orthographic projection (Open GL), 337

overlays, map, 246–249

15967index.indd 433 6/5/09 11:14:28 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

nINDEX434

P
PackageManager class, 101

padding attribute, 138–139

panning and zooming (maps), 244–245

parcelable interface, 292–299

permissions

attributes of, 233–234

custom, 232–238

declaring/using, 230–231

perspective projection (Open GL), 337

PhoneStateListener, 324

populating context menus, 167

populating menus with alternative menu
items, 169–170

POST Requests, HTTP, 266–269

prefabricated applications/intents, 92–94

preferences framework

CheckBoxPreference, 367–369

EditTextPreference, 370–371

flight-options example, 363–367

list preferences, 365–367

nested PreferenceScreen elements,
373–374

organizing preferences, 373–376

preference screens, 365

PreferenceCategory elements, 375–376

RingtonePreference, 371–372

primitive shapes (OpenGL ES), 329–330

process boundaries, 229–230

projection maps, 90

projections, 72

prompt dialogs, designing, 179–184, 185

properties, EditText control, 115

Protocol Description Unit (PDU) mode, 320

Provider projects, 19

public methods, android.app.Service,
277–278

public static identifier, 35

Q
QEMU technology, 10

queries, Android

basics, 34

query method, 84–85

R
R.java file, 44

RadioButton control, 120–122

raw resources, 58–59

RecognizerIntent class, 392–393

recording

audio, 311–316

audio with intents, 386–388

records, inserting, 76–77

registering

content providers, 90–91

for location updates, 258–260

view for context menus, 167

RelativeLayout layout manager, 139–140

Remote Procedure Call (RPC), 278, 282

remote services, 25. See also AIDL (Android
Interface Definition Language)
services

Renderer interface, 343

Renderer.java (OpenGL test harness), 354

resources, Android

arbitrary XML files as, 57–58

assets directory, 59

color drawable resources, 55–57

color resources, 51

compiled/noncompiled, 48–49

defining custom resource IDs, 48

dimension resources, 53–54

directory structure, 60

image resources, 54–55

layout resources, 45–47

raw resources, 58–59

resource-reference syntax, 47

string resources, 43–45, 51–53

support for, 11

supported types, 49–51

15967index.indd 434 6/5/09 11:14:29 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

nINDEX 435

responding

to menu items, 151, 154–156, 168

to XML-based menu items, 174

RingtonePreference, 371–372

R.java class, 35

rotate animation, 204, 211–212

RPC (Remote Procedure Call), 278, 282

RSS, live folders and, 404

Rubin, Andy, 3

rules for resolving intents to components,
102

runtime security checks

permissions, custom, 232–238

permissions, declaring/using, 230–231

process boundaries and, 229–230

S
scale animation, 204–205, 209

screens

customizing layout for configurations,
145–146

preference, 365

size of, 338

SD cards

defined, 301

scanning for media, 390–392

video playback from, 308–311

SDK, Android

history of, 4

Java packages in, 15–18

Sears, Nick, 3

security model, Android

location-based services. See location-
based services

overview, 225–226

runtime security checks. See runtime
security checks

signing applications for deployment,
226–229

self-signed certificates (security), 226–228

sending messages (SMS), 316–319

service components, Android, 13

services, Android

AIDL services. See AIDL (Android Inter-
face Definition Language) services

basics, 25

HTTP. See HTTP services

local services, 276, 278–282

public methods of android.app.Service,
277–278

remote services, 276

simple service example, 276

setDataSource method, 305–307

shape tag, 56–57

shortcut tags, menu item (XML), 176

signing applications, 226–229

SimpleActivity.java (live folders), 420–421

SimpleCursorAdapter, 34, 146–147

SimpleTriangleRenderer.java, 398–400

Skia graphics library, 9

SMS (Short Message Service)

folders, 321–322

incoming messages, monitoring, 319–321

sending e-mail, 322–323

sending messages, 14, 316–319

socket timeouts, 269

software stack, Android, 8–9

sort-order IDs (menu items), 152

source code, Android, 18

speech recognition, 17

SQLite

basic statements, 66–67

defined, 9

SQLiteOpenHelper class, 37

SQLiteQueryBuilder class, 75

startActivity() method, 35

state transitions of activities, 40–41

stencils, defined, 334

stock-quoter remote service example,
283–288

stride argument (glVertexPointer), 332

string resources, 43–45, 51–53

submenus, 164–165, 175

Surface Manager library, 9

surface view classes (OpenGL), 396

SurfaceHolder class, 340

15967index.indd 435 6/5/09 11:14:29 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

nINDEX436

synchronous calls on services, 299

syntax, resource-reference, 47

system menus, provisioning for, 165

system-level services, 258

T
TableLayout layout manager, 134–139

tags

to simulate submenus (XML), 175

XML menu, 175–176

telephony APIs

components, Android, 14–15

SMS. See SMS (Short Message Service)

telephony manager, 323–324

test harness sample application

adding regular menu items, 159–160

adding secondary menu items, 160

AndroidManifest.xml file, updating,
162–163

creating activity, 158

creating XML layout, 158

frame-by frame animation, 202–204

layout file for (animation), 199–200

menu setup, 158–159

overview, 156–157

planning (layout animation), 205–206

responding to menu-item clicks, 160–161

text

controls, 113–117

messaging, 316–319

TextView control, 114–115

threads, geocoding with background,
253–256

time/date controls, 128–130

timeouts, 269–271

TimePicker control, 128–129

T-Mobile G1, 421

ToggleButton control, 118–119

top-level activity, 32

transformation matrices, 222

translate animation, 204, 211

translate methods, 220

transport exceptions, 269–270

triangles

adding with indices (OpenGL test har-
ness), 360–362

OpenGL drawing, 398–401

TriangleRenderer.java, 345, 355–357

tweening

animation, 12, 197, 204–205

defined, 204

U
UIs, Android

advanced concepts, 12–13

building in code, 108–111

building in XML, 111–112

creating in XML with IDs, 112–113

overview, 107–108

UI framework, 10

using AbsoluteLayout layout manager,
142

up vector orientation, 335–336

update method, 87

updates and deletes, 78–79

URIs (Uniform Resource Identifiers)

Android content, structure of, 68–69

data (intents), 94

reading data with, 71–73

registering with cursor, 418

UriMatcher class, 88–90

user interfaces

audio recorder example, 312

SMS example, 319

users, live folders and, 405–410

V
vertices

defined (OpenGL ES), 329

specifying drawing, 330–332

video capture, 384–386

video content, playing, 307–311

15967index.indd 436 6/5/09 11:14:29 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

nINDEX 437

view animation

adding, 216–220

AnimationListener class, 221–222

Camera class for depth perception, 220–221

defined, 197

fundamentals, 213–216

transformation matrices, 222

views

classes, 107–108

in J2EE, defined, 24

points, 335–336

registering for context menus, 167

view-animation activity, 215–216,
218–219

ViewAnimationListener class, 222

ViewGroups, 204

viewing volume, 336–337

views/view groups, defined, 10

visibility tags, menu (XML), 176

visible flag tags (XML), 176

voice recognition (Android 1.5), 392–393

W
web servers, video playback from, 307–308

web sites, for downloading

ADT plug-in, 378

Android 1.5 SDK, 377

Android SDK, 22

Commons IO, Apache, 267

Eclipse IDE for Java Developers, 22

GPX file samples, 261

HttpMime, Apache, 267

JDK 6, 21

Mime4j, Apache, 267

web sites, for further information

Android 1.5 SDK online resources, 423

Android Built-in Providers, 61

Android Market, 227

Android SDK documentation, 10

Android SDK support for OpenGL, 328

Android source distribution, 18

EGL API, 338

Git source-code control system, 18

Google Android Platform, 1

Java API 1.4, 14

JSR 239 documentation, 327

Khronos Group, 326

KML files, 261

list of registered MIME types, 69

M3G graphics standard, 328

Open Handset Alliance, 3

OpenGL documentation, 326

OpenGL ES documentation, 327

QEMU technology, 10

sqlite3 commands, 66

WebKit library, 9

weight property, 132–133

WHERE clauses (SQL), 74–76

while loops, 73–74

White, Chris, 3

widgets, defined, 108

world coordinates, 330–331, 335

wrapping cursors, 418–419

X
X.509 certificates, 226

XML (Extensible Markup Language)

AAPT and, 30

arbitrary files as resources, 57–58

building UI in, 111–112

for creating UI with IDs, 112–113

DatePicker and TimePicker controls in, 128

layout, creating MapView Control via, 130

layout, definition of GridView in, 126–127

layout for prompt dialog, 180, 185

menu resource files, 172–174

menu tags, 175–176

XML-based menu items, responding to,
174

XmlPullParser, 57–58

Z
zooming and panning (maps), 244–245

15967index.indd 437 6/5/09 11:14:29 AM

Download at www.conquerthenext.com

http://www.conquerthenext.com/

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Who this Book Is For
	What this Book Covers
	How to Contact the Authors

	Introducing the android Computing platform
	History of Android
	Delving into the Dalvik VM
	Comparing Android and Java ME
	Understanding the Android Software Stack
	Developing an End-User Application with the Android SDK
	The Android Emulator
	The Android UI
	The Android Foundational Components
	Advanced UI Concepts
	Android Service Components
	Android Media and Telephony Components
	Android Java Packages

	Taking Advantage of Android Source Code
	Summary

	Getting Your Feet Wet
	Setting Up Your Environment
	Downloading JDK 6 and Eclipse 3.4
	Downloading the Android SDK
	Installing Android Development Tools (ADT)

	Learning the Fundamental Components
	View
	Activity
	Intent
	Content Provider
	Service
	AndroidManifest.xml

	Hello World!
	Exploring the Structure of an Android Application
	Analyzing the Notepad Application
	Loading and Running the Notepad Application
	Dissecting the Application

	Examining the Application Lifecycle
	Debugging Your App
	Summary

	Using resources, Content providers, and Intents
	Understanding Resources
	String Resources
	Layout Resources
	Resource-Reference Syntax
	Defining Your Own Resource IDs for Later Use
	Compiled and Noncompiled Android Resources
	Enumerating Key Android Resources
	Color resources
	More on String resources
	Dimension resources
	Image resources
	Color-Drawable resources

	Working with Arbitrary XML Resource Files
	Working with Raw Resources
	Working with Assets
	Reviewing the Resources Directory Structure

	Understanding Content Providers
	Exploring Android’s Built-in Providers
	exploring Databases on the emulator and available Devices
	Quick SQLite primer

	Architecture of Content Providers
	Structure of android Content UrIs
	Structure of android MIMe types
	reading Data Using UrIs
	Using the Cursor
	Working with the where Clause
	Inserting records
	adding a File to a Content provider
	Updates and Deletes

	Implementing Content Providers
	planning a Database
	extending Contentprovider
	Fulfilling MIMe-type Contracts
	Implementing the Query Method
	Implementing an Insert Method
	Implementing an Update Method
	Implementing a Delete Method
	Using UriMatcher to Figure Out the UrIs
	Using projection Maps
	registering the provider

	Understanding Intents
	Available Intents in Android
	Intents and Data URIs
	Generic Actions
	Using Extra Information
	Using Components to Directly Invoke an Activity
	Best Practice for Component Designers
	Understanding Intent Categories
	The Rules for Resolving Intents to Their Components
	Exercising the ACTION_PICK
	Exercising the GET_CONTENT Action

	Summary

	Building User Interfaces and Using Controls
	UI Development in Android
	Understanding Android’s Common Controls
	Text Controls
	textView
	edittext
	autoCompletetextView
	MultiautoCompletetextView

	Button Controls
	the Button Control
	the ImageButton Control
	the toggleButton Control
	the CheckBox Control
	the radioButton Control

	List Controls
	Grid Controls
	Date and Time Controls
	the Datepicker and timepicker Controls
	the analogClock and DigitalClock Controls

	Other Interesting Controls in Android
	The MapView Control
	The Gallery Control

	Understanding Layout Managers
	The LinearLayout Layout Manager
	Understanding Weight and Gravity
	android:gravity vs. android:layout_gravity

	The TableLayout Layout Manager
	The RelativeLayout Layout Manager
	The AbsoluteLayout Layout Manager
	The FrameLayout Layout Manager
	Customizing Layout for Various Screen Configurations

	Understanding Adapters
	Getting to Know SimpleCursorAdapter
	Getting to Know ArrayAdapter
	Creating Custom Adapters

	Debugging and Optimizing Layouts with the Hierarchy Viewer
	Summary

	Working with Menus and Dialogs
	Understanding Android Menus
	Creating a Menu
	Responding to Menu Items
	responding to Menu Items through onOptionsItemSelected
	responding to Menu Items through Listeners
	Using an Intent to respond to Menu Items

	Creating a Test Harness for Testing Menus
	Creating an XML Layout
	Creating an activity
	Setting Up the Menu
	adding regular Menu Items
	adding Secondary Menu Items
	responding to Menu-Item Clicks
	tweaking the androidManifest.xml File

	Working with Other Menu Types
	Expanded Menus
	Working with Icon Menus
	Working with Submenus
	Provisioning for System Menus
	Working with Context Menus
	registering a View for a Context Menu
	populating a Context Menu
	responding to Context Menu Items

	Working with Alternative Menus
	Working with Menus in Response to Changing Data

	Loading Menus Through XML Files
	Structure of an XML Menu Resource File
	Inflating XML Menu Resource Files
	Responding to XML-Based Menu Items
	A Brief Introduction to Additional XML Menu Tags
	Group Category tag
	Checkable Behavior tags
	tags to Simulate a Submenu
	Menu Icon tag
	Menu enabling/Disabling tag
	Menu Item Shortcuts
	Menu Visibility

	Using Dialogs in Android
	Designing an Alert Dialog
	Designing a Prompt Dialog
	XML Layout File for the prompt Dialog
	Setting Up an alert-Dialog Builder with a User View
	Setting Up Buttons and Listeners
	Creating and Showing the prompt Dialog
	prompt Dialog Listener
	putting It all together

	Nature of Dialogs in Android
	Rearchitecting the Prompt Dialog

	Working with Managed Dialogs
	Understanding the Managed-Dialog Protocol
	Recasting the Nonmanaged Dialog as a Managed Dialog
	Simplifying the Managed-Dialog Protocol
	IDialogprotocol
	ManagedactivityDialog
	Dialogregistry
	ManagedDialogsactivity
	IDialogFinishedCallBack
	GenericManagedalertDialog
	GenericpromptDialog

	Summary

	Unveiling 2D animation
	Frame-by-Frame Animation
	Planning for Frame-by-Frame Animation
	Creating the Activity
	Adding Animation to the Activity

	Layout Animation
	Basic Tweening Animation Types
	Planning the Layout-Animation Test Harness
	Creating the Activity and the ListView
	Animating the ListView
	Using Interpolators

	View Animation
	Understanding View Animation
	Adding Animation
	Using Camera to Provide Depth Perception in 2D
	Exploring the AnimationListener Class
	Some Notes on Transformation Matrices

	Summary

	exploring Security and Location-Based Services
	Understanding the Android Security Model
	Overview of Security Concepts
	Signing Applications for Deployment
	Generating a Self-Signed Certificate Using the Keytool
	Using the Jarsigner tool to Sign the .apk File
	Installing Updates to an application and Signing

	Performing Runtime Security Checks
	Understanding Security at the Process Boundary
	Declaring and Using Permissions
	Understanding and Using Custom Permissions

	Working with Location-Based Services
	Understanding the Mapping Package
	Obtaining a map-api Key from Google
	Understanding MapView and Mapactivity
	Using Overlays

	Understanding the Location Package
	Geocoding with android
	Geocoding with Background threads
	Understanding the LocationManager Service

	Summary

	Building and Consuming Services
	Consuming HTTP Services
	Using the HttpClient for HTTP GET Requests
	Using the HttpClient for HTTP POST Requests
	Dealing with Exceptions
	Addressing Multithreading Issues

	Doing Interprocess Communication
	Creating a Simple Service
	Understanding Services in Android
	Understanding Local Services
	Understanding AIDL Services
	Defining a Service Interface in AIDL
	Implementing an AIDL Interface
	Calling the Service from a Client Application
	Passing Complex Types to Services

	Summary

	Using the Media Framework and telephony apIs
	Using the Media APIs
	Understanding the setDataSource Method
	Playing Video Content
	Video playback from a Web Server
	Video playback from the SD Card

	Understanding the MediaPlayer Oddities
	Exploring Audio Recording

	Using the Telephony APIs
	Working with SMS
	Sending SMS Messages
	Monitoring Incoming SMS Messages
	Working with SMS Folders
	Sending e-mail

	Working with the Telephony Manager

	Summary

	programming 3D Graphics with OpenGL
	Understanding OpenGL
	OpenGL ES
	OpenGL ES and Java ME
	M3G: Another Java ME 3D Graphics Standard

	Using OpenGL ES
	Essential Drawing with OpenGL ES
	glVertexpointer and Specifying Drawing Vertices
	glDrawelements
	glClear
	glColor

	Understanding the Camera and Coordinates
	gluLookat and the Camera Symbolism
	glFrustum and the Viewing Volume
	glViewport and Screen Size

	Interfacing OpenGL ES with Android
	Getting an eGL Context
	associating a Drawing Surface with OpenGL eS through the eGL Context
	Closing Out OpenGL at the end of the program

	Creating and Using the OpenGL Test Harness
	Designing the Test Harness
	OpenGLTestHarnessActivity.java
	OpenGLTestHarness.java
	OpenGLDrawingThread.java
	EglHelper.java
	Renderer.java
	AbstractRenderer.java
	SimpleTriangleRenderer.java
	Changing Camera Settings
	Using Indices to Add Another Triangle

	Summary

	Managing and Organizing preferences
	Exploring the Preferences Framework
	Understanding CheckBoxPreference
	Understanding EditTextPreference
	Understanding RingtonePreference
	Organizing Preferences
	Summary

	Coming to Grips with 1.5
	Installing the ADT Plug-in for Android 1.5 Development
	Getting Started with Android 1.5
	Creating an Android Virtual Device
	Exploring Improvements to the Media Framework
	Using the MediaRecorder Class for Video Capture
	Exploring the MediaStore Class
	Scanning the Media Store for Media Content

	Exploring Voice Recognition
	Introducing the Input-Method Framework
	Summary

	Simplifying OpenGL and exploring Live Folders
	Simplifying OpenGL
	Reimplementing the Simple Triangle OpenGL Drawing
	Simpletrianglerenderer.java
	OpenGL15testharnessactivity.java

	OpenGL Animation Example
	animatedtriangleactivity.java
	animatedSimpletrianglerenderer.java

	Exploring Live Folders
	How a User Experiences Live Folders
	Building a Live Folder
	androidManifest.xml
	allContactsLiveFolderCreatoractivity.java
	MyContactsprovider.java
	MyCursor.java
	BetterCursorWrapper.java
	Simpleactivity.java
	exercising Live Folders

	The Future of Android and the 1.5 SDK
	Key Online Resources for the 1.5 SDK
	Summary

	Index

